Tan x /(1 +sec x) + (1+sec x) /tan x
Tan x=sin x / cos x
1+ sec x=1 +1/cos x=(cos x+1)/cos x
Therefore:
tan x /(1 +sec x) =(sin x/cos x)/(cos x+1)/cos x=
=(sin x * cos x) / [cos x* (cos x+1)]=sin x /(Cos x+1)
(1+sec x) /tan x=[(cos x+1)/cos x] / (sin x/cos x)=
=[cos x(cos x+1)]/(sin x *cos x)=(cos x+1)/sin x
tan x /(1 +sec x) + (1+sec x) /tan x=
=sin x /(Cos x+1) + (cos x+1)/sin x=
=(sin²x+cos²x+2 cos x+1) / [sin x(cos x+1)]=
Remember: sin²x+cos²x=1⇒ sin²x=1-cos²x
=(1-cos²x+cos²x+2 cos x+1) / [sin x(cos x+1)]=
=2 cos x+2 / [sin x(cos x+1)]=
=2(cos x+1) / [sin x(cos x+1)]=
=2 /sin x
Answer : tan x /(1 +sec x) + (1+sec x) /tan x= 2/sin x
Answer:
8.8= slope=1/3
y intercept=4/3
X intercept= -4
8.9 slope=1
Y intercept= 2
X intercept= -2
Step-by-step explanation:
compare the equation with the standard equation Y= MX + C
where M is the slope
to find Y intercept substitute the value of x as 0
to find X intercept substitute the value of Y as 0
yes they are congruent with ASA
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Step-by-step explanation:
<u>Step 1: Define</u>
<u />
<u />
<u />
<u>Step 2: Evaluate</u>
- [Fraction] Exponents:

- [Fraction] Subtract:

- [Fraction] Divide:

✿ Domain is the Set of Values of x
⇒ Domain = { 10 , 15 , 19 , 32 }
✿ Range is the Set of Values of y (Images of x)
⇒ Range = { -1 , 5 , 9 }
First Option is the Answer