1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valina [46]
2 years ago
14

A culture of bacteria has an initial population of 9300 bacteria and doubles every 3

Mathematics
1 answer:
sp2606 [1]2 years ago
7 0

Answer:

The approximate population of bacteria in the culture after 10 hours is 93,738.  

Step-by-step explanation:

<h3>General Concepts:</h3>
  • Exponential Functions.
  • Exponential Growth.
  • Doubling Time Model.
  • Logarithmic Form.

BPEMDAS Order of Operations:

  1. Brackets.
  2. Parenthesis.
  3. Exponents.
  4. Multiplication.
  5. Division.
  6. Addition.
  7. Subtraction.
<h2>Definitions:</h2>

We are given the following Exponential Growth Function (Doubling Time Model), \displaystyle\mathsf{P_{(t)}\:=\:P_0\cdot2^{(t/d)}} where:

  • \displaystyle\sf{P_t\:\:\rightarrow} The population of bacteria after “<em>t </em>” number of hours.
  • \displaystyle\sf{P_0 \:\:\rightarrow} The initial population of bacteria.
  • \displaystyle{t \:\:\rightarrow}  Time unit (in hours).
  • \displaystyle{\textit d \:\:\rightarrow}  Doubling time, which represents the amount of time it takes for the population of bacteria to grow exponentially to become twice its initial quantity.  
<h2>Solution:</h2>

<u>Step 1: Identify the given values.</u>

  • \displaystyle\sf{P_0\:=} 9,300.
  • <em>t</em> = 10 hours.
  • <em>d</em> = 3.  

<u>Step 2: Find value.</u>

1. Substitute the values into the given exponential function.

  \displaystyle\mathsf{P_{(t)} = P_0\cdot2^{(t/d)}}

  \displaystyle\mathsf{\longrightarrow P_{(10)} = 9300\cdot2^{(10/3)}}

2. Evaluate using the BPEMDAS order of operations.

  \displaystyle\mathsf{P_{(10)} = 9300\cdot2^{(10/3)}\quad \Longrightarrow BPEMDAS:\:(Parenthesis\:\:and\:\:Division).}

  \displaystyle\sf P_{(10)} = 9300\cdot2^{(3.333333)}\quad\Longrightarrow BPEMDAS:\:(Exponent).}

  \displaystyle\sf P_{(10)} = 9300\cdot(10.079368399)\quad \Longrightarrow BPEMDAS:(Multiplication).}

 \boxed{\displaystyle\mathsf{P_{(10)} \approx 93,738.13\:\:\:or\:\:93,738}}

Hence, the population of bacteria in the culture after 10 hours is approximately 93,738.  

<h2>Double-check:</h2>

We can solve for the amount of <u>time</u> <u>(</u><em>t</em> ) it takes for the population of bacteria to increase to 93,738.

1. Identify given:

  • \displaystyle\mathsf{P_{(t)} = 93,738 }.
  • \displaystyle\mathsf{P_0 = 9,300}.
  • <em>d </em>= 3.

2. Substitute the values into the given exponential function.

  \displaystyle\mathsf{P_{(t)} = P_0\cdot2^{(t/d)}}

  \displaystyle\mathsf{\longrightarrow 93,378 = 9,300\cdot2^{(t/3)}}

3. Divide both sides by 9,300:

  \displaystyle\mathsf{\longrightarrow \frac{93,378}{9,300} = \frac{9,300\cdot2^{(t/3)}}{9,300}}

  \displaystyle\mathsf{\longrightarrow 10.07936840 = 2^{(t/3)}}

4. Transform the right-hand side of the equation into logarithmic form.

  \boxed{\displaystyle\mathsf{\underbrace{ x = a^y}_{Exponential\:Form} \longrightarrow \underbrace{y = log_a x}_{Logarithmic\:Form}}}    

  \displaystyle\mathsf{\longrightarrow 10.07936840 = \bigg[\:\frac{t}{3}\:\bigg]log(2)}  

5. Take the <em>log</em> of both sides of the equation (without rounding off any digits).  

  \displaystyle\mathsf{log(10.07936840) = \bigg[\:\frac{t}{3}\:\bigg]log(2)}

  \displaystyle\mathsf{\longrightarrow 1.003433319 = \bigg[\:\frac{t}{3}\:\bigg]\cdot(0.301029996)}

6. Divide both sides by (0.301029996).

  \displaystyle\mathsf{\frac{1.003433319}{0.301029996} = \frac{\bigg[\:\frac{t}{3}\:\bigg]\cdot(0.301029996) }{0.301029996}}

  \displaystyle\mathsf{\longrightarrow 3.3333333  = \frac{t}{3}}

7. Multiply both sides of the equation by 3 to isolate "<em>t</em>."

  \displaystyle\mathsf{(3)\cdot(3.3333333)  = \bigg[\:\frac{t}{3}\:\bigg]\cdot(3)}

  \boxed{\displaystyle\mathsf{t\approx10}}

Hence, it will take about 10 hours for the population of bacteria to increase to 93,378.    

__________________________________

Learn more about Exponential Functions on:

brainly.com/question/18522519            

You might be interested in
Which of the following could be the equation of a line parallel to the line y =-2/3x-1
kkurt [141]
It would be c, y = 2/3x + 6
5 0
3 years ago
Find a1 when d= - 1 and a7= -2
Pie

Answer:

  • a₁ = 4

Step-by-step explanation:

<u>Given</u>

  • d = - 1
  • a₇ = - 2

<u>Find</u> a₁

Use the nth term equation of AP

  • aₙ = a₁ + (n - 1)d

Apply to the given case and solve for a₁

  • - 2 = a₁ + 6(- 1)
  • - 2 = a₁ - 6
  • a₁ = 6 - 2
  • a₁ = 4
5 0
2 years ago
Cuales serían los distintos grupos de personas que podrian sentarse en 24 mesas cuadradas de tal manera que formen otras mesas r
andrezito [222]

Answer:

Step-by-step explanation:

5 0
3 years ago
Ill give you alot of points for this
rusak2 [61]

Answer:

ok

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
HELP!!!!!!!!!!!!!!! please show your work, look at the picture
Margarita [4]

Answer:

B= 2y(3)/7x(8)

C= 12/ x(3) y(3)

D= The same because nothing else can be done with it

(parnthaces) are exponents

6 0
3 years ago
Other questions:
  • If ABCD is a rhombus with no right angles, then ?
    6·2 answers
  • A box is filled with 10 brown cards , 4 yellow cards, and 4 red cards. A card is chosen at random from the box. What is the prob
    6·1 answer
  • A small publishing company is planning to publish a new book. The production costs will include one-time fixed costs (such as ed
    7·1 answer
  • Find Slope -5,3 and 7,8
    13·2 answers
  • Houa is ordering a taxi from an online taxi service. The taxi charges $3.50 just for the pickup and then an additional $1.25 per
    6·1 answer
  • Find the height of a cone with a diameter of 12 m and whose volume is 133 m.
    13·1 answer
  • 1 3rd x 9k plus 12 =15 ​
    12·1 answer
  • What is the awnser to y=4-3x
    11·1 answer
  • After school, Diana had a science club meeting for 1 hour and 20 minutes, followed by a choir rehearsal that lasted for 1 hour a
    14·1 answer
  • What was developed as a tool used to investigate a change in natural sciences?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!