Answer:
d
Step-by-step explanation:
The answer:
let be A(x) =<span>2√ 3 cos(x)csc(x)+4cos(x)-3csc(x)-2 √ 3
this function can be represented as </span><span>the product of the factors
proof
</span>2√ 3 cos(x)csc(x)+4cos(x)-3csc(x)-2 √ 3 =
2√ 3 cos(x)csc(x)+4cos(x)csc(x) / csc(x) - 3csc(x)- 2 √ 3 csc(x) / csc(x)
this method doesn't change nothing inside the function A(x)
so we have
[ 2√ 3 cos(x) +4cos(x) / csc(x) - 3 - 2 √ 3 / csc(x) ] . csc(x) this is a product of two factors,
[ 2√ 3 cos(x) +4cos(x) / csc(x) - 3 - 2 √ 3 / csc(x) ] and csc(x)
for more explanation
A(x) =[ 2√ 3 cos(x) - 3 + (4cos(x) - 2 √ 3 ) / csc(x) ] . csc(x)
Answer:
$6386.1140
Step-by-step explanation:
Using the compound interest formula :
A = P(1 + r/n) ^nt
P 5500 ; rate, r = 10% = 0.10 ; t = 18 months = 18/12 = 1.5 years,
Compounding times per period = 12 (monthly)
A = 5500(1 + 0.1/12)^12*1.5
A = 5500(1 + 0.0083333)^18
A = 5500(1.0083333)^18
A = 5500 * 1.1611116
A = 6386.1140
Hence, amount to be repaid = $6386.1140