Answer:
This is because in biology, energy is transferred from organism to organism and some energy is lost along the way. Each energy transfer results in a loss of energy, so that energy is always at a lower level and can never be returned to its original high energy level. On the other hand, chemical elements can form products, then that reaction can be reversed and break back down into reactants. Additionally, the law of conservation of matter says that matter can't be created or destroyed, only transferred from one form to another.
The answer to this question would be: vitamin
Some bacteria can produce vitamin K2 in the intestine. Other bacteria also able to change vitamin K1 into vitamin K2. But the amount produced is not much, so human still need to fulfill it from the diet. Vitamin K has a role in calcium regulation and in blood clotting pathway.
Rotation is the spinning of a planet, revolution is when a planet circles the sun/planet.
The atmosphere transfers heat energy and moisture across the Earth. Incoming solar radiation (insolation) is redistributed from areas in which there is a surplus of heat (the equator) to areas where there is a heat deficit (the North and South Pole). This is achieved through a series of atmospheric cells: the Hadley cell, the Ferrel cell and the Polar cell (Figure 2). These operate in a similar way to, and indeed interact with, the ocean conveyor.
For example, as the oceans at low latitudes are heated, water evaporates and is transported poleward as water vapour. This warm air eventually cools and subsides. Changes in temperature and CO2 concentrations can lead to: changes in the size of atmospheric cells (in particular, the Hadley cell is susceptible to these alterations); warming in the troposphere; and disproportionately strong warming in Arctic regions. The strong interactions between ocean and atmospheric dynamics, and the significant feedback mechanisms between them, mean that climate researchers must consider these Earth components as interlinked systems. The necessity to assess ocean-atmospheric changes at the global scale has implications for the way in which research is conducted. It is only by integrating palaeo evidence of past changes, with present day monitoring, and projected models,
It means that the organism does not require air (oxygen) to live