Answer:
The length of minor arc AB is
π ft
Step-by-step explanation:
The formula of the length of an arc in a circle is L =
× 2πr, where α is the central angle subtended by the arc, and r is the radius of the circle
∵ The radius of the circle is 4 ft
∴ r = 4
∵ ∠AOB is a central angle subtended by minor arc AB
∵ m∠AOB = 50°
∴ α = 50°
Substitute the values of r and α in the rule above
∵ L =
× 2π(4)
∴ L =
π
∴ The length of minor arc AB is
π ft
8 - 11 = -3. The square root of 25/121 = (the square root of 25) / (the square root of 121) = 5/11 . -3 x 5/11 = -3/1 x 5/11 = (-3 x 5) / (1 x 11) = (-15)/11 = -15/11.
24= 3*2^3
88= 11*2^3
664= 83*2^3 -> 83=11+72 = 11 + 2^3*3^2
664=2^3 (11+2^3*3^2) = 88 +(2^3*2^3*3^2) = 88 +(24^2)
8408= 1051 * 2^3 -> 1051= 83+968 -> 968 = 2^3 * 11^2
8408= 2^3 (83+2^3*11^2) = 664 +(2^3*2^3*11^2) = 664 +(88^2)
So:
a(n) = a(n-1) + a(n-2)^2
Lets check: 88+24^2= 664
664+88^2= 8408
Answer:

Step-by-step explanation:
In order to find r we have to square both sides of the equation

The *square root* sign cancels out the *squared* sign therefore:

Answer:
32
Step-by-step explanation:
Step 1: Define
f(x) = 3x² - 5x - 4
g(x) = -4x - 12
Step 2: Find f(g(x))
f(g(x)) = 3(-4x - 12)² - 5(-4x - 12) - 4
f(g(x)) = 3(16x² + 96x + 144) + 20x + 60 + 4
f(g(x)) = 48x² + 288x + 432 + 20x + 64
f(g(x)) = 48x² + 308x + 496
Step 3: Find f(g(-4))
f(g(-4)) = 48(-4)² + 308(-4) + 496
f(g(-4)) = 48(16) - 1232 + 496
f(g(-4)) = 768 - 736
f(g(-4)) = 32