1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisabon 2012 [21]
2 years ago
10

A cab company calculates cab fares using the expression 1.50d + 3, where d is the distance traveled in miles. If a passenger has

to pay a $21 fare for a ride, which number from the set {9, 12, 15, 18} is the value of d?
Mathematics
1 answer:
Dovator [93]2 years ago
5 0

Answer:

12

Step-by-step explanation:

⇒ 21 - 3 = 18 = 1.5a

⇒ a = 12

You might be interested in
Jeff has to pay his car insurance annually. If his total bill is $744, how much money should he set aside each month for car ins
daser333 [38]
<span>Since Jeff is paying an annual amount of $744 he needs to set aside 12 monthly payments for the year. To figure out how much each payment would be you divide the total for the year 744 by the number of months 12. $744/12=$62 Each monthly payment would be $62</span>
7 0
3 years ago
Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​
IRISSAK [1]

<u>Prove that:</u>

\:\:\sf\:\:\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C=0

<u>Proof: </u>

We know that, by Law of Cosines,

  • \sf \cos A=\dfrac{b^2+c^2-a^2}{2bc}
  • \sf \cos B=\dfrac{c^2+a^2-b^2}{2ca}
  • \sf \cos C=\dfrac{a^2+b^2-c^2}{2ab}

<u>Taking</u><u> </u><u>LHS</u>

\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C

<em>Substituting</em> the value of <em>cos A, cos B and cos C,</em>

\longmapsto\left(\dfrac{b^2-c^2}{a}\right)\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+\left(\dfrac{c^2-a^2}{b}\right)\left(\dfrac{c^2+a^2-b^2}{2ca}\right)+\left(\dfrac{a^2-b^2}{c}\right)\left(\dfrac{a^2+b^2-c^2}{2ab}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^4-c^4)-(a^2b^2-a^2c^2)}{2abc}\right)+\left(\dfrac{(c^4-a^4)-(b^2c^2-a^2b^2)}{2abc}\right)+\left(\dfrac{(a^4-b^4)-(a^2c^2-b^2c^2)}{2abc}\right)

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\dfrac{c^4-a^4-b^2c^2+a^2b^2}{2abc}+\dfrac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>On combining the fractions,</em>

\longmapsto\dfrac{(b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2)}{2abc}

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>Regrouping the terms,</em>

\longmapsto\dfrac{(a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2)}{2abc}

\longmapsto\dfrac{(0)+(0)+(0)+(0)+(0)+(0)}{2abc}

\longmapsto\dfrac{0}{2abc}

\longmapsto\bf 0=RHS

LHS = RHS proved.

7 0
2 years ago
Roberto watched 5 more hours of tv than Jamie last week. Together, they watched a total of 23 hours of tv last week. How many ho
Veronika [31]

Answer: 14 hours

Step-by-step explanation:

Let the number of hours of TV that Jamie watched be represented by x.

Since Roberto watched 5 more hours of tv than Jamie last week, therefore the number of hours of TV that Roberto watched will be: x + 5

Together, they watched a total of 23 hours of tv last week. Therefore,

x + (x + 5) = 23

2x + 5 = 23

2x = 23 - 5

2x = 18

x = 18/2

x = 9

Jamie watched 9 hours of TV

Therefore, Roberto watched x+ 5 = 9 + 5 = 14 hours

3 0
2 years ago
(08.05, 08.06 MC)
natali 33 [55]
Bbbbbbbbbbbbbbbbbbbbb

7 0
1 year ago
Is 19.1 the same as 191
laiz [17]

Answer:

no

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • The base of a ladder is 25 meters due west of a burning building. If the angle of elevation of the ladder is 51°, how long is th
    7·1 answer
  • My question is what is 4-5h how do you solve this problem
    14·2 answers
  • What is the prime factorization of 12
    5·2 answers
  • The weight of an adult blue whale is 9 × 104 kilograms; the weight of an elephant is 3 × 103 kilograms. How many times heavier i
    5·1 answer
  • Please simplify! 1+x-1+12x=12x-3
    13·2 answers
  • A car passes a landmark on a highway traveling at a constant rate of 55 kilometers per hour. One hour later, a second car passes
    5·1 answer
  • Which table represents a linear function?
    13·2 answers
  • Find the exact value of Sin 2π.
    7·1 answer
  • Is 7/12,1/6,-1/4,-2/3 arithmetic?
    12·1 answer
  • Type the number to the left of the rational number in the box to the point it represents on the number
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!