Answer:
(a) (f+g)(x) = √(2x) +x²
(b) (f-g)(x) = √(2x) -x²
(c) (f·g)(x) = x²√(2x)
(d) (f/g)(x) = (√(2x))/x²
Step-by-step explanation:
These are all about the meaning of the notation (f <operator> g)(x). When the operator is an arithmetic operation (addition, subtraction, multiplication, division), the notation means the same thing as ...
f(x) <operator> g(x)
__
(a) (f+g)(x) = f(x) + g(x)
(f+g)(x) = √(2x) +x²
__
(b) (f-g)(x) = f(x) -g(x)
(f-g)(x) = √(2x) -x²
__
(c) (f·g)(x) = f(x)·g(x)
(f·g)(x) = x²√(2x)
__
(d) (f/g)(x) = f(x)/g(x)
(f/g)(x) = (√(2x))/x²
Answer:
470 balls
Step-by-step explanation:
Let the number of tennis balls Kerns have be x and the number of tennis balls Hardy has be 3x. We want to find their difference: 3x-x = 2x
Total no. of balls = Kerns + Hardy
= x + 3x
= 4x
4x = 940
2x =
× 940
= 470
Answer:
The radius of the circle P = 2√10 = 6.325
Step-by-step explanation:
∵ AB is a tangent to circle P at A
∴ (AB)² = BC × BE
∵ BC = 8 , AB = 12 , ED = 6
∵ BE = ED + DC + CB
∴ BE = 6 + CD + 8 = 14 + CD
∴ (12)² = 8 × (14 + DC) ⇒ (12)²/8 = 14 + CD ⇒ CD = (12)²/8 - 14
∴ CD = 4
Join PC and PE (radii)
In ΔBDC and ΔPDE ⇒ ∵ ∠PDC = Ф , ∴ ∠PDE = 180 - Ф
Use cos Rule:
∵ r² = (PD)² + (DC)² - 2(PD)(DC)cosФ
∴ r² = 16 + 16 - 32cosФ = 32 - 32cosФ ⇒ (1)
∵ r² = (PD)² + (DE)² - 2(PD)(DE)cos(180 - Ф) ⇒ cos(180 - Ф) = -cosФ
∴ r² = 16 + 36 + 48cosФ = 52 + 48cosФ ⇒ (2)
∵ (1) = (2)
∴ 32 - 32 cosФ = 52 + 48cosФ
∴ 32 - 52 = 48cosФ + 32cosФ
∴ -20 = 80cosФ
∴ cosФ = -20/80 = -1/4
∴ r² = 32 - 32(-1/4) = 32 + 8 = 40
∴ r = √40 = 2√10 = 6.325
Answer:
95.5
Step-by-step explanation:
you can using toa
tan = opp/adj
tan 37° = 72/x
x = 72/ tan 37°
x = 95.547 feet
x = 95.5
Answer: 4 terms
Step-by-step explanation:
-4a , 8c, -4b, and 3