Answer:
Step-by-step explanation:
a circle will satisfy the conditions of Green's Theorem since it is closed and simple.
Let's identify P and Q from the integral
, and
Now, using Green's theorem on the line integral gives,

Answer:
5k-17
Step-by-step explanation:
-14+5k-3=5k-14-3=5k-17
if we have a number like say hmm 4, and we say hmmm √4 is ±2, it simply means, that if we multiply that number twice by itself, we get what's inside the root, we get the 4, so (+2)(+2) = 4, and (-2)(-2) = 4, recall that <u>minus times minus = plus</u>.
so, any when we're referring to even roots like
, the positive number, that can multiply itself an even amount of times, will produce a valid value, BUT the negative number that multiply itself an even amount of times, will also produce a valid value.
now, that's is not true for odd roots like
, because the multiplication of the negative number will not produce a valid value, let's put two examples on that.
![\bf \sqrt[3]{27}\implies \sqrt[3]{3^3}\implies 3\qquad because\qquad (3)(3)(3)=27 \\\\\\ however\qquad (-3)(-3)(-3)\ne 27~\hspace{8em}(-3)(-3)(-3)=-27 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \sqrt[3]{-125}\implies \sqrt[3]{-5^3}\implies -5\qquad because\qquad (-5)(-5)(-5)=-125 \\\\\\ however\qquad (5)(5)(5)\ne -125~\hspace{10em}(5)(5)(5)=125](https://tex.z-dn.net/?f=%5Cbf%20%5Csqrt%5B3%5D%7B27%7D%5Cimplies%20%5Csqrt%5B3%5D%7B3%5E3%7D%5Cimplies%203%5Cqquad%20because%5Cqquad%20%283%29%283%29%283%29%3D27%0A%5C%5C%5C%5C%5C%5C%0Ahowever%5Cqquad%20%28-3%29%28-3%29%28-3%29%5Cne%2027~%5Chspace%7B8em%7D%28-3%29%28-3%29%28-3%29%3D-27%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Csqrt%5B3%5D%7B-125%7D%5Cimplies%20%5Csqrt%5B3%5D%7B-5%5E3%7D%5Cimplies%20-5%5Cqquad%20because%5Cqquad%20%28-5%29%28-5%29%28-5%29%3D-125%0A%5C%5C%5C%5C%5C%5C%0Ahowever%5Cqquad%20%285%29%285%29%285%29%5Cne%20-125~%5Chspace%7B10em%7D%285%29%285%29%285%29%3D125)
so, when the root is an odd root, you will always get only one number that will produce the radicand.
All we need to do is to divide the number of eligible voters by 62% to find out how many people have been registered:
55200 ÷ 62% =
= 55200 ÷ 62/100 =
= 55200 * 100/62 =
= 5520000 / 62 =
= 89032,25806451613 ≈ (note the rounding to the nearest whole number)
≈ 89032
Doublecheck:
89032 * 62% =
= 89032 * 62/100 =
= 5519984 / 100 =
= 55199,84 ≈ (the difference is because of the rounding before)
≈ 55200
Answer: There were 89,032 people registered.