Sorry, but I don't see any information for me to use to answer that question.
1) What is the slant height x of this square pyramid? Express your answer in radical form
sin 60=x/4--------> x=4*sin 60------> 4*(√3/2)-------> 2 √3 m
the answer Part 1) is 2 √3 m
2) The base of a regular pyramid is a hexagon. What is the area of the base of the pyramid?
[area of the base}=[area of hexagon]
[area of hexagon]=6*[area of triangle]
area of triangle
sin 60=a/14-------> a=(√3/2)*14-------> a=7√3 cm
cos 60=(b/2)/14--------> (b/2)=cos 60*14-----> (1/2)*14---------> (b/2)=7
base of triangle=2*7--------> b=14 cm
[area of triangle]=14*7√3 /2--------> 49√3 cm²
so
[area of hexagon]=6*[49√3]--------> 294√3 cm²
Answer:
x = -3
y = 8
Step-by-step explanation:
x + 2y = 13 ------------(I)
x = 13 - 2y -----------(II)
-2x - 3y = -18 ----------(III)
Substitute x = 13 - 2y in equation (III)
-2*(13 - 2y) - 3y = -18
-2*13 - 2y *(-2) -3y = -18
-26 + 4y - 3y = -18 {Combine like terms}
-26 + y = -18 {Add 26 to both sides}
y = -18 + 26
y = 8
Substitute y = 8 in equation (II)
x = 13 - 2*8
= 13 - 16
x = -3
x = -3
y = 8
260/4 = 65 square inches is area of a side
area of a side = base*height/2 = base *13/2
65 = b*13/2
130=b*13
b = 10 so the side length equal 10 inches
area of base = 10*10 = 100
volume of a pyramid = area of base time height /3
(the height of pyramid)^2 = 13^2 - 5^2
h^2 = 169 -25 = 144
h = 12
V = area of base time height /3 = 100*12/3 = 400 cubic inches
hope this will help you
Answer:
10400MM
1.04 litre
Step-by-step explanation:
volume = length x width x height
13 x 8 x 10 = 1040 cm^3
1cm = 10 mm
1040 x 10 = 10400MM
1cm = 0.001 litres
1040 x 0.001 = 1.04 l