Y = 500(1 + r)^x; where r is the rate and x is the number of years.
500(1 + r)^2 = 551.25
(1 + r)^2 = 551.25/500 = 1.1025
1 + r = sqrt(1.1025) = 1.05
Therefore, the equation that represents y, the value of the item after x years is
y = 500(1.05)^x
Check the picture below.
so then, the perimeter of that hexagon will just be the sum of all its 6 sides, or namely 3⅖ + 3⅖ + 3⅖ + 3⅖ + 3⅖ + 3⅖, or just 6( 3⅖ ).
![\bf \textit{area of a regular polygon}\\\\ A=\cfrac{1}{2}ap~~ \begin{cases} a=apothem\\ p=perimeter\\[-0.5em] \hrulefill\\ a=3\\ p=6\left(3\frac{2}{5} \right) \end{cases}\implies A=\cfrac{1}{2}(3)\left[ 6\left(3\frac{2}{5} \right) \right]\implies A=\cfrac{1}{2}(3)\left[ 6\left(\cfrac{17}{5} \right) \right] \\\\\\ A=\cfrac{1}{2}(3)\left(\cfrac{102}{5} \right)\implies A=\cfrac{1}{2}\left( \cfrac{306}{5} \right)\implies A=\cfrac{153}{5}\implies A=30\frac{3}{5}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7Dap~~%20%5Cbegin%7Bcases%7D%20a%3Dapothem%5C%5C%20p%3Dperimeter%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D3%5C%5C%20p%3D6%5Cleft%283%5Cfrac%7B2%7D%7B5%7D%20%5Cright%29%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%5B%206%5Cleft%283%5Cfrac%7B2%7D%7B5%7D%20%5Cright%29%20%5Cright%5D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%5B%206%5Cleft%28%5Ccfrac%7B17%7D%7B5%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%28%5Ccfrac%7B102%7D%7B5%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%5Cleft%28%20%5Ccfrac%7B306%7D%7B5%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B153%7D%7B5%7D%5Cimplies%20A%3D30%5Cfrac%7B3%7D%7B5%7D)
Equation:

3x+10 = 45+10 = 55
The answer is 55 because this is a isosceles triangle.
Answer: 0.3679
Step-by-step explanation:
The cumulative distribution function for exponential distribution is :-
, where
is the mean of the distribution.
Given : A mean length of waiting time equal
minutes
i.e. Mean number of calls answered in a minute 
Now, the proportion of callers is put on hold longer than 2.8 minutes is given by :_

Hence, the proportion of callers is put on hold longer than 2.8 minutes = 0.3679