Answer:
The number 32 is part of the solution set
The circle on the graph is closed
The arrow on the graph points to the left
Step-by-step explanation:
The number 32 is part of the solution because it said that water freezes at 32 degrees when it is at or below 32
The circle on the graph is closed because 32 is part of the answer , when the solution is showed then the circle is closed.
Last but not least the arrow on the graph points left because water freezes when it is at 32 or below 32 degrees, so when it points left the numbers become lower.
Hope this helped! :)
Whole numbers<span><span>\greenD{\text{Whole numbers}}Whole numbers</span>start color greenD, W, h, o, l, e, space, n, u, m, b, e, r, s, end color greenD</span> are numbers that do not need to be represented with a fraction or decimal. Also, whole numbers cannot be negative. In other words, whole numbers are the counting numbers and zero.Examples of whole numbers:<span><span>4, 952, 0, 73<span>4,952,0,73</span></span>4, comma, 952, comma, 0, comma, 73</span>Integers<span><span>\blueD{\text{Integers}}Integers</span>start color blueD, I, n, t, e, g, e, r, s, end color blueD</span> are whole numbers and their opposites. Therefore, integers can be negative.Examples of integers:<span><span>12, 0, -9, -810<span>12,0,−9,−810</span></span>12, comma, 0, comma, minus, 9, comma, minus, 810</span>Rational numbers<span><span>\purpleD{\text{Rational numbers}}Rational numbers</span>start color purpleD, R, a, t, i, o, n, a, l, space, n, u, m, b, e, r, s, end color purpleD</span> are numbers that can be expressed as a fraction of two integers.Examples of rational numbers:<span><span>44, 0.\overline{12}, -\dfrac{18}5,\sqrt{36}<span>44,0.<span><span> <span>12</span></span> <span> </span></span>,−<span><span> 5</span> <span> <span>18</span></span><span> </span></span>,<span>√<span><span> <span>36</span></span> <span> </span></span></span></span></span>44, comma, 0, point, start overline, 12, end overline, comma, minus, start fraction, 18, divided by, 5, end fraction, comma, square root of, 36, end square root</span>Irrational numbers<span><span>\maroonD{\text{Irrational numbers}}Irrational numbers</span>start color maroonD, I, r, r, a, t, i, o, n, a, l, space, n, u, m, b, e, r, s, end color maroonD</span> are numbers that cannot be expressed as a fraction of two integers.Examples of irrational numbers:<span><span>-4\pi, \sqrt{3}<span>−4π,<span>√<span><span> 3</span> <span> </span></span></span></span></span>minus, 4, pi, comma, square root of, 3, end square root</span>How are the types of number related?The following diagram shows that all whole numbers are integers, and all integers are rational numbers. Numbers that are not rational are called irrational.