Answer:
Part 1) 
Part 2) 
Part 3) 
Step-by-step explanation:
Part 1) Find AC
we know that
In the right triangle ABC of the figure
Applying the Pythagorean Theorem

substitute the given values


Part 2) Find the measure of angle A
we know that
In the right triangle ABC
----> by TOA (opposite side divided by the adjacent side)
substitute the values

using a calculator

Part 3) Find the measure of angle C
we know that
In the right triangle ABC
----> by complementary angles
substitute the given value


Step-by-step explanation:
25(2x) + 25(3y)
25 · (2 · x) + 25 · (3 · y)
(25 · 2) · x + (25 · 3) · y <em>Associative property </em><em>(a · b) · c = a · (b · c)</em>
(25 · 2)x + (25 · 3)y
(2 · 25)x + (3 · 25)y <em>Commutative property</em><em> a · b = b · a</em>
<em>50x + 75y</em>
<em>V</em>≈301.59
I think this is the answer.
Hope this helps!
<span>A)x-y+3 is your answer
Proof:
(5 x)/4 - 8 y - x/4 + 7 y + 3
Put each term in (5 x)/4 - 8 y - x/4 + 7 y + 3 over the common denominator 4: (5 x)/4 - 8 y - x/4 + 7 y + 3 = (5 x)/4 - (32 y)/4 - (x)/4 + (28 y)/4 + 12/4:
(5 x)/4 - (32 y)/4 - x/4 + (28 y)/4 + 12/4
(5 x)/4 - (32 y)/4 - x/4 + (28 y)/4 + 12/4 = (5 x - 32 y - x + 28 y + 12)/4:
(5 x - 32 y - x + 28 y + 12)/4
Grouping like terms, 5 x - 32 y - x + 28 y + 12 = (28 y - 32 y) + (5 x - x) + 12:
((28 y - 32 y) + (5 x - x) + 12)/4
28 y - 32 y = -4 y:
(-4 y + (5 x - x) + 12)/4
5 x - x = 4 x:
(-4 y + 4 x + 12)/4
Factor 4 out of -4 y + 4 x + 12:
(4 (-y + x + 3))/4
(4 (-y + x + 3))/4 = 4/4×(3 + x - y) = 3 + x - y:
Answer: 3 + x - y
</span>