Given the following table that gives data from a linear function:
![\begin {tabular} {|c|c|c|c|} Temperature, $y = f(x)$ (^\circ C)&0&5&20 \\ [1ex] Temperature, $x$ (^\circ F)&32&41&68 \\ \end {tabular}](https://tex.z-dn.net/?f=%5Cbegin%20%7Btabular%7D%0A%7B%7Cc%7Cc%7Cc%7Cc%7C%7D%0ATemperature%2C%20%24y%20%3D%20f%28x%29%24%20%28%5E%5Ccirc%20C%29%260%265%2620%20%5C%5C%20%5B1ex%5D%0ATemperature%2C%20%24x%24%20%28%5E%5Ccirc%20F%29%2632%2641%2668%20%5C%5C%20%0A%5Cend%20%7Btabular%7D)
The formular for the function can be obtained by choosing two points from the table and using the formular for the equation of a straight line.
Recall that the equation of a straight line is given by

Using the points (32, 0) and (41, 5), we have:
Answer:
Less than 100. Z=83
Step-by-step explanation:
The mean is the average found by adding the sum of the data points and dividing by the number of them. Here there are 3 cars whose speeds are 101, 116, and Z or unknown. The mean of them is 100. Solve for Z.
100 =(101+116+Z)/3
300=217+Z
83=Z
Answer:
60%
Step-by-step explanation:
It would be B) 3/15
You distribute 5 to both 3x and 4, giving you 15x+20=23
Then, you subtract 20 from both sides of the equation, giving you 15x = 3
And then you divide both sides by 15 so you can isolate x