1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANTONII [103]
1 year ago
13

A tank originally contains 100 gallon of fresh water. Then water containing 0.5 Lb of salt per gallon is pourd into the tank at

a rate of 2 gal/minute, and the mixture is allowed to leave at the same rate. After 10 minute the process is stopped, and fresh water is poured into the tank at a rate of 2 gal/min, with the mixture again leaving at the same rate. Find the amount of salt in the tank at end of an additional 10 minutes.
Mathematics
1 answer:
Assoli18 [71]1 year ago
7 0

Let S(t) denote the amount of salt (in lbs) in the tank at time t min up to the 10th minute. The tank starts with 100 gal of fresh water, so S(0)=0.

Salt flows into the tank at a rate of

\left(0.5\dfrac{\rm lb}{\rm gal}\right) \left(2\dfrac{\rm gal}{\rm min}\right) = 1\dfrac{\rm lb}{\rm min}

and flows out with rate

\left(\dfrac{S(t)\,\rm lb}{100\,\mathrm{gal} + \left(2\frac{\rm gal}{\rm min} - 2\frac{\rm gal}{\rm min}\right)t}\right) \left(2\dfrac{\rm gal}{\rm min}\right) = \dfrac{S(t)}{50} \dfrac{\rm lb}{\rm min}

Then the net rate of change in the salt content of the mixture is governed by the linear differential equation

\dfrac{dS}{dt} = 1 - \dfrac S{50}

Solving with an integrating factor, we have

\dfrac{dS}{dt} + \dfrac S{50} = 1

\dfrac{dS}{dt} e^{t/50}+ \dfrac1{50}Se^{t/50} = e^{t/50}

\dfrac{d}{dt} \left(S e^{t/50}\right) = e^{t/50}

By the fundamental theorem of calculus, integrating both sides yields

\displaystyle S e^{t/50} = Se^{t/50}\bigg|_{t=0} + \int_0^t e^{u/50}\, du

S e^{t/50} = S(0) + 50(e^{t/50} - 1)

S = 50 - 50e^{-t/50}

After 10 min, the tank contains

S(10) = 50 - 50e^{-10/50} = 50 \dfrac{e^{1/5}-1}{e^{1/5}} \approx 9.063 \,\rm lb

of salt.

Now let \hat S(t) denote the amount of salt in the tank at time t min after the first 10 minutes have elapsed, with initial value \hat S(0)=S(10).

Fresh water is poured into the tank, so there is no salt inflow. The salt that remains in the tank flows out at a rate of

\left(\dfrac{\hat S(t)\,\rm lb}{100\,\mathrm{gal}+\left(2\frac{\rm gal}{\rm min}-2\frac{\rm gal}{\rm min}\right)t}\right) \left(2\dfrac{\rm gal}{\rm min}\right) = \dfrac{\hat S(t)}{50} \dfrac{\rm lb}{\rm min}

so that \hat S is given by the differential equation

\dfrac{d\hat S}{dt} = -\dfrac{\hat S}{50}

We solve this equation in exactly the same way.

\dfrac{d\hat S}{dt} + \dfrac{\hat S}{50} = 0

\dfrac{d\hat S}{dt} e^{t/50} + \dfrac1{50}\hat S e^{t/50} = 0

\dfrac{d}{dt} \left(\hat S e^{t/50}\right) = 0

\hat S e^{t/50} = \hat S(0)

\hat S = 50 \dfrac{e^{1/5}-1}{e^{1/5}} e^{-t/50}

After another 10 min, the tank has

\hat S(10) = 50 \dfrac{e^{1/5}-1}{e^{1/5}} e^{-1/5} = 50 \dfrac{e^{1/5}-1}{e^{2/5}} \approx \boxed{7.421}

lb of salt.

You might be interested in
2m-16+5m+45 simplify the expression
Ilya [14]
2m -16 + 5m + 45 = 7m + 29
4 0
3 years ago
Simplify this expression. <br><br> -3[2-(y-5)]-4[3(y+1)-(6-y)(-2)]
suter [353]

Answer:

-81 - y

Step-by-step explanation:

To simplify the expression -3[2-(y-5)]-4[3(y+1)-(6-y)(-2)] use order of operations or PEMDAS.

-3[2-(y-5)]-4[3(y+1)-(6-y)(-2)]

-3[2-y+5]-4[3y + 3+12 -2y]

-3[7-y] -12y-12-48+8y

-3[7-y] - 4y - 60

-21 + 3y - 4y - 60

-81 - y

5 0
3 years ago
Two functions f and g are defined on the set R, of real numbers by f : x  2x  3 and
iren2701 [21]

Answer:8

Step-by-step explanation:

3 0
2 years ago
Find the quadratic equation given that the roots are 4 and 7​
artcher [175]

Answer: {−4,7} is y=x2−3x−28 y = x 2 - 3 x - 28 .

Step-by-step explanation: so all ways do y and x first

6 0
2 years ago
Which statement about numbers is true?
Romashka [77]

If the perimeter of the rectangle is 60 in, find its area.

S

tyjhgfdcghjgfcjkbvnm.knbvnmIf the perimeter of the rectangle is 60 in, find its area.

5 0
3 years ago
Other questions:
  • Something times something that equals 7
    9·2 answers
  • What is 100,000,000 written as a power of ten? A.10 8 B.10 9 C.10 10 10 D.10 11
    5·2 answers
  • Estimate. Then find he product. 92*68
    13·2 answers
  • A phone company charges a flat rate of $15 to make phone calls for a month.they charge $0.10 per minute for each call made.if th
    10·2 answers
  • Please Help :)<br> What is the distance between the points in the image below?
    5·2 answers
  • The red figure is congruent to the blue figure. Choose two different sequences of transformations in which the blue figure is th
    11·2 answers
  • Please answer now this is a big test <br><br>which description best fits the group​
    9·1 answer
  • Translate this sentence into an equation.
    8·2 answers
  • Help pleaseeeeeeeee<br> ...
    8·1 answer
  • Which of the relationships below represents a function with a greater rate of change than the function, Y= -4 + 3?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!