Answer:
A percent is a ratio of the parts to the whole
Step-by-step explanation:
If you had 30/100, 30% as a percentage, 30 would be the parts and 100 would be the whole
Answer:
The school baseball team sold 270 tickets
Step-by-step explanation:
Step 1
Identify the total amount of tickets sold by each player;
1 player=1 book of tickets
But 1 book=10 tickets
Step 2
Express the total cost of ticket sales per book as follows;
total cost=cost per ticket×number of tickets per book
where;
cost per ticket=$3
number of tickets per book=10
replacing;
total cost=(3×10)=$30
Step 3
Using the expression below, solve for the number of tickets sold
Total amount raised=price per ticket×number of tickets sold
where;
total amount raised=$810
price per ticket=$3
number of tickets sold=n
replacing;
810=3×n
3 n=810
n=810/3=270
n=270
The school baseball team sold 270 tickets
Answer:
a) -4
b) 1
c) 1
Step-by-step explanation:
a) The matrix A is given by:
![A=\left[\begin{array}{ccc}-3&0&1\\2&-4&2\\-3&-2&1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%260%261%5C%5C2%26-4%262%5C%5C-3%26-2%261%5Cend%7Barray%7D%5Cright%5D)
to find the eigenvalues of the matrix you use the following:

where lambda are the eigenvalues and I is the identity matrix. By replacing you obtain:
![A-\lambda I=\left[\begin{array}{ccc}-3-\lambda&0&1\\2&-4-\lambda&2\\-3&-2&1-\lambda\end{array}\right]](https://tex.z-dn.net/?f=A-%5Clambda%20I%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3-%5Clambda%260%261%5C%5C2%26-4-%5Clambda%262%5C%5C-3%26-2%261-%5Clambda%5Cend%7Barray%7D%5Cright%5D)
and by taking the determinant:
![[(-3-\lambda)(-4-\lambda)(1-\lambda)+(0)(2)(-3)+(2)(-2)(1)]-[(1)(-4-\lambda)(-3)+(0)(2)(1-\lambda)+(2)(-2)(-3-\lambda)]=0\\\\-\lambda^3-6\lambda^2-12\lambda-16=0](https://tex.z-dn.net/?f=%5B%28-3-%5Clambda%29%28-4-%5Clambda%29%281-%5Clambda%29%2B%280%29%282%29%28-3%29%2B%282%29%28-2%29%281%29%5D-%5B%281%29%28-4-%5Clambda%29%28-3%29%2B%280%29%282%29%281-%5Clambda%29%2B%282%29%28-2%29%28-3-%5Clambda%29%5D%3D0%5C%5C%5C%5C-%5Clambda%5E3-6%5Clambda%5E2-12%5Clambda-16%3D0)
and the roots of this polynomial is:

hence, the real eigenvalue of the matrix A is -4.
b) The multiplicity of the eigenvalue is 1.
c) The dimension of the eigenspace is 1 (because the multiplicity determines the dimension of the eigenspace)
Hello !!



<h2><em>EXPLANATION :</em></h2><h2><em /></h2>
Switch sides:

Subtract 3 from both sides:

Simplify:



Hope It Helps. . .
#LearnWithBrainly

Jace ^-^