Answer:
lol NO my math teacher gives me like this
9xy(x4yt)00x23) and all other stuff it so ugh makes me mad :( lol
(a) converges; consider the function <em>f(x)</em> = <em>a</em> ˣ, which converges to 0 as <em>x</em> gets large for |<em>a</em> | < 1. Then the limit is 2.
(b) converges; we have
4ⁿ / (1 + 9ⁿ) = (4ⁿ/9ⁿ) / (1/9ⁿ + 9ⁿ/9ⁿ) = (4/9)ⁿ × 1/(1/9ⁿ + 1)
As <em>n</em> gets large, the exponential terms vanish; both (4/9)ⁿ → 0 and 1/9ⁿ → 0, so the limit is 1.
(c) converges; we know ln(<em>n</em> ) → ∞ and arctan(<em>n</em> ) → <em>π</em>/2 as <em>n</em> → ∞. So the limit is <em>π</em>/2.
Answer:
D
Step-by-step explanation:
Because in 5 days he did 415 bottle in 12 it will be 996.
Answer:
Area: 272ft²
Volume = 82.6236447189ft³
Step-by-step explanation:
AREA
The area of a square pyramid is found by combining the area of the base and the area of the triangular faces:
Area of base = area of square = L² = 8² = 16ft²
Area of one triangular face = (1/2)bh = (1/2)(8)(16) = 64ft²
There are four triangular faces so the total area = 16+4(64)= 16+256= 272 ft²
VOLUME
The volume of a square pyramid = (a²)(h/3), where a is the length of the base and h is the length from the top of the pyramid to the middle of the square.
We are given a, but not h. To find h, we must imagine a right-angled triangle within the pyramid, where 16ft is the hypotenuse, h is the height and the base is half of a (since the base is a square and the distance is from the edge to the middle). We can then use pythagorus's theorem to find h:
A²=B²+C²
16²=(8/2)²+h²
256=16+h²
h=√240
h=15.4919333848ft
Knowing h, we can find the volume:
Volume = (a²)(h/3)
Volume = (8²)(15.4919333848/3)
Volume = (16)(5.16397779493)
Volume = 82.6236447189ft³