Answer:
a. 99.30% of the woman meet the height requirement
b. If all women are eligible except the shortest 1% and the tallest 2%, then height should be between 58.32 and 68.83
Explanation:
<em>According to the survey</em>, women's heights are normally distributed with mean 63.9 and standard deviation 2.4
a)
A branch of the military requires women's heights to be between 58 in and 80 in. We need to find the probabilities that heights fall between 58 in and 80 in in this distribution. We need to find z-scores of the values 58 in and 80 in. Z-score shows how many standard deviations far are the values from the mean. Therefore they subtracted from the mean and divided by the standard deviation:
z-score of 58 in= = -2.458
z-score of 80 in= = 6.708
In normal distribution 99.3% of the values have higher z-score than -2.458
0% of the values have higher z-score than 6.708. Therefore 99.3% of the woman meet the height requirement.
b)
To find the height requirement so that all women are eligible except the shortest 1% and the tallest 2%, we need to find the boundary z-score of the
shortest 1% and the tallest 2%. Thus, upper bound for z-score has to be 2.054 and lower bound is -2.326
Corresponding heights (H) can be found using the formula
and
Thus lower bound for height is 58.32 and
Upper bound for height is 68.83
Answer:
Letters of recommendation are important for colleges because the writers of these letters are trusted adults who try to persuade the college to accept your presence.
Explanation:
Kinh tế lao động là nghiên cứu về sức lao động với tư cách là một yếu tố của quá trình sản xuất. Lực lượng lao động bao gồm tất cả những người làm việc vì lợi ích trong thị trường lao động, cho dù là người lao động, người sử dụng lao động hoặc lao động tự do, nhưng cả những người thất nghiệp đang tìm kiếm việc làm.
Answer:
I believe the answer you are looking for is 80.
Explanation: