1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-BARSIC- [3]
2 years ago
5

You expect to receive $10,000 at graduation in two years. You plan on investing it at 11% until you have $75,000. How long will

you wait from now?
Mathematics
1 answer:
stich3 [128]2 years ago
4 0

Answer:

about 19.31 years

Step-by-step explanation:

10000( {1.11}^{x} ) = 75000

{1.11}^{x}  = 7.5

x ln(1.11)  =  ln(7.5)

x =  \frac{ ln(7.5) }{ ln(1.11) }  = 19.31

You might be interested in
PLEASE HELP!!! I️ HAVE TONS OF HW DUE!!! If 8 is added to twice a number and there some is multiplied by five the result is the
zlopas [31]

5(2x +8) = -8x + 4

Use distributive property:

10x +40 = -8x + 4

Subtract 40 from each side:

10x = -8x -36

Add 8x to each side:

18x = -36

Divide both sides by 18:

x = -36 / 18

x = -2


The number is -2



5 0
3 years ago
A) Compute the sum
avanturin [10]
A)

To calculate this sum, we could use trigonometric identity:

\arcsin(x)-\arcsin(y)=\arcsin\left(x\sqrt{1-y^2}-y\sqrt{1-x^2}\right)

We have:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k+1-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{(k+1)^2-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\dfrac{\sqrt{(k+1)^2-1}}{\sqrt{(k+1)^2}}-\dfrac{1}{k+1}\cdot\dfrac{\sqrt{k^2-1}}{\sqrt{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{\dfrac{(k+1)&^2-1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{\dfrac{k^2-1}{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\dfrac{1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{1-\dfrac{1}{k^2}}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\left(\dfrac{1}{k+1}\right)^2}-\dfrac{1}{k+1}\cdot\sqrt{1-\left(\dfrac{1}{k}\right)^2}\right]=\\\\\\=
\sum\limits_{k=1}^n\left[\arcsin\left(\dfrac{1}{k}\right)-\arcsin\left(\dfrac{1}{k+1}\right)\right]=\\\\\\

=\bigg[\arcsin(1)-\arcsin\left(\frac{1}{2}\right)\bigg]+\bigg[\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)\bigg]+\\\\\\+
\bigg[\arcsin\left(\frac{1}{3}\right)-\arcsin\left(\frac{1}{4}\right)\bigg]+\dots+
\bigg[\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)\bigg]=\\\\\\

=\arcsin(1)-\arcsin\left(\frac{1}{2}\right)+\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)+\arcsin\left(\frac{1}{3}\right)-\\\\\\-\arcsin\left(\frac{1}{4}\right)+\dots+\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)=\\\\\\=
\arcsin(1)-\arcsin\left(\frac{1}{n+1}\right)=\dfrac{\pi}{2}-\arcsin\left(\frac{1}{n+1}\right)

So the answer is:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)}

B)

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\Bigg(\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)\Bigg)=\dfrac{\pi}{2}-\lim\limits_{n\to\infty}\arcsin\left(\dfrac{1}{n+1}\right)=\\\\\\=
\Bigg\{\dfrac{1}{n+1}\xrightarrow{n\to\infty}0\Bigg\}=\dfrac{\pi}{2}-\arcsin(0)=\dfrac{\pi}{2}-0=\dfrac{\pi}{2}

So we prove that:

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}
7 0
3 years ago
How do you write 8.11 as an improper fraction
Gre4nikov [31]
8.11 as an improper fraction is 811 over 100 811/100 if you convert
6 0
3 years ago
‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎
REY [17]

Answer:

20% shaded. 1/5 in simplist form

4 0
3 years ago
How many figures (line of symmetry)
soldier1979 [14.2K]
4, vertical, horizontal, and both diagonals
5 0
3 years ago
Other questions:
  • The surface area of a polyhedron can be found by
    5·2 answers
  • Select the term that best describes the statement. Geometry is fun or ducks do not like water. conjunction disjunction negation
    13·2 answers
  • −y+3 ≤ 8 and y+2>9 Solve the inequality
    10·1 answer
  • Em um triangulo retangulo abc EM QUE A HIPOTENUSA BC mede 30cm sabe-se que o seno do angulo oposto ao lado ab mede 0,6 desse mod
    11·1 answer
  • PLEASE HELP WILL GIVE BRAINLYEST
    11·2 answers
  • PLZ HELP WILL GIVE BRAINLIST IF CORRECT: Mamadou answered 77 questions correctly on his multiple choice math final that had a to
    15·2 answers
  • Bruno bought a PSS for $800. If the store charges 160% of its cost for the game system, how much is the store's profit?
    12·1 answer
  • Help me please i have a C in math
    6·1 answer
  • Christy spent 25 of her money on a shirt. She has $21.75 left. How much did she spend on the shirt?
    14·2 answers
  • From first principle find the derivative of ln(cosec x^2)​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!