1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irina [24]
3 years ago
13

A) Compute the sum

Mathematics
1 answer:
avanturin [10]3 years ago
7 0
A)

To calculate this sum, we could use trigonometric identity:

\arcsin(x)-\arcsin(y)=\arcsin\left(x\sqrt{1-y^2}-y\sqrt{1-x^2}\right)

We have:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k+1-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{(k+1)^2-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\dfrac{\sqrt{(k+1)^2-1}}{\sqrt{(k+1)^2}}-\dfrac{1}{k+1}\cdot\dfrac{\sqrt{k^2-1}}{\sqrt{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{\dfrac{(k+1)&^2-1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{\dfrac{k^2-1}{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\dfrac{1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{1-\dfrac{1}{k^2}}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\left(\dfrac{1}{k+1}\right)^2}-\dfrac{1}{k+1}\cdot\sqrt{1-\left(\dfrac{1}{k}\right)^2}\right]=\\\\\\=
\sum\limits_{k=1}^n\left[\arcsin\left(\dfrac{1}{k}\right)-\arcsin\left(\dfrac{1}{k+1}\right)\right]=\\\\\\

=\bigg[\arcsin(1)-\arcsin\left(\frac{1}{2}\right)\bigg]+\bigg[\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)\bigg]+\\\\\\+
\bigg[\arcsin\left(\frac{1}{3}\right)-\arcsin\left(\frac{1}{4}\right)\bigg]+\dots+
\bigg[\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)\bigg]=\\\\\\

=\arcsin(1)-\arcsin\left(\frac{1}{2}\right)+\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)+\arcsin\left(\frac{1}{3}\right)-\\\\\\-\arcsin\left(\frac{1}{4}\right)+\dots+\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)=\\\\\\=
\arcsin(1)-\arcsin\left(\frac{1}{n+1}\right)=\dfrac{\pi}{2}-\arcsin\left(\frac{1}{n+1}\right)

So the answer is:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)}

B)

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\Bigg(\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)\Bigg)=\dfrac{\pi}{2}-\lim\limits_{n\to\infty}\arcsin\left(\dfrac{1}{n+1}\right)=\\\\\\=
\Bigg\{\dfrac{1}{n+1}\xrightarrow{n\to\infty}0\Bigg\}=\dfrac{\pi}{2}-\arcsin(0)=\dfrac{\pi}{2}-0=\dfrac{\pi}{2}

So we prove that:

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}
You might be interested in
Pinto
aleksley [76]

Answer:

उत्तर:

गोलाको आयतन :4851 cm³

⁴/3 πr³=4851

r³=4851×3×7/(22*4)

r³=1157.625

r=\sqrt[3]{1157.625}

r=10.5

अब

गोलाको व्यास=2×r=10.5*2=21cm.

5 0
3 years ago
A geneticist is studying a population of fruit flies. Of the 1278 flies, 467 are wingless and 446 have red eyes. There are 210 f
andreev551 [17]
0.49 is the answer because that is <span>the approximate probability</span>
5 0
3 years ago
Solving need help in don't get it
Orlov [11]
\sqrt{3x-5}-2=0
add 2 to both sides
\sqrt{3x-5}=2
square both sides
3x-5=4
add 5 to both sides
3x=9
divide 3
x=3

a nswer is B
4 0
3 years ago
A forest ranger is in a forest 2 miles from a straight road. A car is located c miles down the road. The forest ranger can walk
Tcecarenko [31]

Answer:

  • T(x) = (√(4+x^2))/2 +(c -x)/4
  • (a) x = 1.155 miles
  • (b) x = 1/2 mile

Step-by-step explanation:

The straight line distance from the starting point to the point x on the road is given by the Pythagorean theorem:

  d1 = √(2²+x²)

The time required to walk that distance in the woods (at 2 miles per hour) is ...

  time = distance / speed

  t1 = √(4+x²)/2

The remaining distance along the road to the car is ...

  d2 = c - x . . . . . for c > x

and the corresponding time at 4 mph is ...

  t2 = (c -x)/4

Then the total time is ...

  T(x) = t1 +t2

  T(x) = √(4+x²)/2 +(c -x)/4

__

(a) The value of x that minimizes total time is the one that makes the derivative zero.

  T'(x) = x/(2√(4+x²)) -1/4

  0 = (2x -√(4+x²))/(4√(4+x²))

  √(4+x²) = 2x . . . . . fraction is zero when numerator is zero; add radical

  4 +x² = 4x² . . . . . . square both sides

  4/3 = x² . . . . . . . . . subtract x², divide by 3

  x = (2/3)√3 ≈ 1.1547

If c = 9 miles, x = 1.1547 miles.

__

(b) For c < (2/3)√3, the shortest travel time will be along the straight-line path to the car.

If c = 1/2 mile, x = 1/2 mile.

8 0
3 years ago
Traveling 65 mph how many we can you're traveling 22 minutes
Artist 52 [7]
You are travelling 65 miles in 1 hour, or 60 minutes.

So 65 miles in 60 minutes
And x miles in 22 minutes

We can solve the following for x to get the answer

\frac{65}{60} =  \frac{x}{22}\\ 22(65) = 60x \\1430 = 60x \\x = 23.83

Hope that helps. :)
6 0
3 years ago
Read 2 more answers
Other questions:
  • The side lengths of triangle ABC are written in terms of the variable p, where p ≥ 3.
    14·2 answers
  • Sharla is moving to New York,she found a movin company that charges a one time fee of $400 and $5 per mile,m.which of the follow
    5·1 answer
  • Which sequence shows the numbers in order from least to greatest?<br> A. <br> B. <br> C. <br> D.
    9·2 answers
  • Item 13<br> Solve y−2x=3y−2x=3 for yy.
    8·1 answer
  • A lumber company is making boards that are 2533.0 millimeters tall. If the boards are too long they must be trimmed, and if the
    11·1 answer
  • Pi is:<br> rational<br> irrational
    12·1 answer
  • Write an equation for the line parallel to the given line that contains point C. y=-1/2x-3 ; C (3, 1)
    13·1 answer
  • HELP PLEASE ASAP!! (10 pts)
    8·1 answer
  • 6th grade math help me pleaseee
    6·2 answers
  • The equation of line / is y=3x/a +5, where a is a positive constant. If the value of a in this equation is doubled, then the res
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!