1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irina [24]
3 years ago
13

A) Compute the sum

Mathematics
1 answer:
avanturin [10]3 years ago
7 0
A)

To calculate this sum, we could use trigonometric identity:

\arcsin(x)-\arcsin(y)=\arcsin\left(x\sqrt{1-y^2}-y\sqrt{1-x^2}\right)

We have:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k+1-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{(k+1)^2-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\dfrac{\sqrt{(k+1)^2-1}}{\sqrt{(k+1)^2}}-\dfrac{1}{k+1}\cdot\dfrac{\sqrt{k^2-1}}{\sqrt{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{\dfrac{(k+1)&^2-1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{\dfrac{k^2-1}{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\dfrac{1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{1-\dfrac{1}{k^2}}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\left(\dfrac{1}{k+1}\right)^2}-\dfrac{1}{k+1}\cdot\sqrt{1-\left(\dfrac{1}{k}\right)^2}\right]=\\\\\\=
\sum\limits_{k=1}^n\left[\arcsin\left(\dfrac{1}{k}\right)-\arcsin\left(\dfrac{1}{k+1}\right)\right]=\\\\\\

=\bigg[\arcsin(1)-\arcsin\left(\frac{1}{2}\right)\bigg]+\bigg[\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)\bigg]+\\\\\\+
\bigg[\arcsin\left(\frac{1}{3}\right)-\arcsin\left(\frac{1}{4}\right)\bigg]+\dots+
\bigg[\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)\bigg]=\\\\\\

=\arcsin(1)-\arcsin\left(\frac{1}{2}\right)+\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)+\arcsin\left(\frac{1}{3}\right)-\\\\\\-\arcsin\left(\frac{1}{4}\right)+\dots+\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)=\\\\\\=
\arcsin(1)-\arcsin\left(\frac{1}{n+1}\right)=\dfrac{\pi}{2}-\arcsin\left(\frac{1}{n+1}\right)

So the answer is:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)}

B)

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\Bigg(\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)\Bigg)=\dfrac{\pi}{2}-\lim\limits_{n\to\infty}\arcsin\left(\dfrac{1}{n+1}\right)=\\\\\\=
\Bigg\{\dfrac{1}{n+1}\xrightarrow{n\to\infty}0\Bigg\}=\dfrac{\pi}{2}-\arcsin(0)=\dfrac{\pi}{2}-0=\dfrac{\pi}{2}

So we prove that:

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}
You might be interested in
Which fraction can be expressed as a repeating decimal?<br> A; 1/10<br> B; 1/4<br> C; 3/5<br> D; 7/9
Tju [1.3M]

Answer: The answer is D

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
A bag contains 20 marbles: 12 red, 4 blue, 3 yellow, and 1 green. Arielle takes out 2 marbles. What is the probability that they
Marysya12 [62]

Total number of marbles in the bag =20

Number of blue marbles =4

Now we just want two blue marbles out of four.

Probability of taking out first marble which is blue =4/20

Now after we took out one blue marble , number of blue marbles left are 3.

Probability of taking out second marble which is blue =3/20

Total probability = 4/20 *3/20 = 12/400

So probability of taking out two blue marbles is 0.03 or 12/400.


3 0
3 years ago
Ellie puts 35 quarter into stacks with the same number of quarter in each stack
ki77a [65]

Answer:

Ellie can make eight stacks of quarters with four quarters in each stack

Step-by-step explanation:

4 0
3 years ago
The perimeter of a rectangle is 64 units. Can the length X of a rectangle be 20 units when it's width y is 11 units
Blababa [14]
Nope. Perimeter = sum of all sides

P = 20 + 11 + 20 + 11 = 62 and not 64

So, it is not possible.
4 0
3 years ago
I need help factoring polynomial 3h9^-192h^6. I don't know where to begin.
Elden [556K]
First, pull out the GCM from the two terms: 3x^6(x^3-64)
Then factor the remains using the difference of cubes: 3x^6(x-4)(x^2+4x+16)
7 0
4 years ago
Other questions:
  • Find the value of x. Round to the nearest tenth. The diagram is not drawn to scale.
    14·2 answers
  • Debra , Pablo , and Ravi have a total of $96 in their wallets. Debra hat $6 more than Pablo. Ravi has 3 times what Pablo has . H
    6·2 answers
  • For the function above is the discriminate, positive, negative, or zero?
    13·1 answer
  • Whatever3443 pls help me someone is murdering me ✌
    7·2 answers
  • 1. 3x + 6y = 3 and 7x + 3y = 7<br>ons for bo​
    8·2 answers
  • Which angles are corresponding angles?
    13·1 answer
  • Kamal's bakery recently spent a total of $700 on new equipment and their average hourly operating costs are $12. Their average h
    13·1 answer
  • Which expression simplifies to 8x^5?
    14·1 answer
  • PLEASE HELP ITS DUE SOON!!!!
    9·1 answer
  • Fill in the blank and which goes where, drag and drop.. <br><br> 80%<br> 95%<br> 33 1/3%<br> 15%
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!