<u>Solution-</u>
The two parabolas are,

By solving the above two equations we calculate where the two parabolas meet,

Given the symmetry, the area bounded by the two parabolas is twice the area bounded by either parabola with the x-axis.
![\therefore Area=2\int_{-c}^{c}y.dx= 2\int_{-c}^{c}(16x^2-c^2).dx\\=2[\frac{16}{3}x^3-c^2x]_{-c}^{ \ c}=2[(\frac{16}{3}c^3-c^3)-(-\frac{16}{3}c^3+c^3)]=2[\frac{32}{3}c^3-2c^3]=2(\frac{26c^3}{3})\\=\frac{52c^3}{3}](https://tex.z-dn.net/?f=%5Ctherefore%20Area%3D2%5Cint_%7B-c%7D%5E%7Bc%7Dy.dx%3D%202%5Cint_%7B-c%7D%5E%7Bc%7D%2816x%5E2-c%5E2%29.dx%5C%5C%3D2%5B%5Cfrac%7B16%7D%7B3%7Dx%5E3-c%5E2x%5D_%7B-c%7D%5E%7B%20%5C%20c%7D%3D2%5B%28%5Cfrac%7B16%7D%7B3%7Dc%5E3-c%5E3%29-%28-%5Cfrac%7B16%7D%7B3%7Dc%5E3%2Bc%5E3%29%5D%3D2%5B%5Cfrac%7B32%7D%7B3%7Dc%5E3-2c%5E3%5D%3D2%28%5Cfrac%7B26c%5E3%7D%7B3%7D%29%5C%5C%3D%5Cfrac%7B52c%5E3%7D%7B3%7D)
![So \frac{52c^3}{3}=\frac{250}{3}\Rightarrow c=\sqrt[3]{\frac{250}{52}}=1.68](https://tex.z-dn.net/?f=So%20%5Cfrac%7B52c%5E3%7D%7B3%7D%3D%5Cfrac%7B250%7D%7B3%7D%5CRightarrow%20c%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B250%7D%7B52%7D%7D%3D1.68)
Answer: The commision would be $ 375
Step-by-step explanation:
Answer:
-2904
Step-by-step explanation: