<h3>
Therefore they are perpendicular.</h3>
Step-by-step explanation:
A equation of line is
y =mx +c
Here the slope of the line is m.
Given equations are
x - 2y = 18
⇔-2y = -x +18
............(1)
and 2x + y = 6
⇔y = -2x +6 ............(2)
Therefore the slope of equation (1) is
= 
Therefore the slope of equation (2) is
= -2
If two lines are perpendicular, when we multiply their slope we get -1.
therefore,
=
. (-2) = -1
Therefore they are perpendicular.

<h3><u>Given </u><u>:</u><u>-</u></h3>
- A marker in the center of the fairway is 150 yards away from the centre of the green
- While standing on the marker and facing the green, the golfer turns 100° towards his ball
- Then he peces off 30 yards to his ball
<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>
- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>distance </u><u>between </u><u>the </u><u>golf </u><u>ball </u><u>and </u><u>the </u><u>center </u><u>of </u><u>the </u><u>green </u><u>.</u>
<h3><u>Let's </u><u> </u><u>Begin </u><u>:</u><u>-</u></h3>
Let assume that the distance between the golf ball and central of green is x
<u>Here</u><u>, </u>
- Distance between marker and centre of green is 150 yards
- <u>That </u><u>is</u><u>, </u>Height = 150 yards
- For facing the green , The golfer turns 100° towards his ball
- <u>That </u><u>is</u><u>, </u>Angle = 100°
- The golfer peces off 30 yards to his ball
- <u>That </u><u>is</u><u>, </u>Base = 30 yards
<u>According </u><u>to </u><u>the </u><u>law </u><u>of </u><u>cosine </u><u>:</u><u>-</u>

- Here, a = perpendicular height
- b = base
- c = hypotenuse
- cos theta = Angle of cosine
<u>So</u><u>, </u><u> </u><u>For </u><u>Hypotenuse </u><u>law </u><u>of </u><u>cosine </u><u>will </u><u>be </u><u>:</u><u>-</u>

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>






Hence, The distance between the ball and the center of green is 153.48 or 153.5 yards
Answer:
-8
Step-by-step explanation: