1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mezya [45]
2 years ago
12

How many three-digit multiples of 5 have three different digits and an odd tens digit?

Mathematics
1 answer:
amid [387]2 years ago
3 0

Answer:

68?

Step-by-step explanation:

multiples of 5 end in 5 or 0

_ _ _

last digit has 2 choices ( 5 and 0 )

1,3,5,7,9 are odd

so tens digit has 5 choices but we see that 5 is repeated so we split into more cases

when last digit is 0, tens digit has 5 choices then hundreds digit has 8 choices so 1*5*8=40

when last digit is 5, tens digit has 4 choices and hundreds digit has 7 choices (0 can't be first digit) 1*4*7=28

40+28=68

You might be interested in
X-2y=18 2x+y=6 parallel perpendicular or neither
sergey [27]
<h3>Therefore they are perpendicular.</h3>

Step-by-step explanation:

A equation of line is

y =mx +c

Here the slope of the line is m.

Given equations are

x - 2y = 18

⇔-2y = -x +18

\Leftrightarrow y =\frac{1}{2} x -9............(1)

and 2x + y = 6

⇔y = -2x +6 ............(2)

Therefore the slope of equation (1) is(m_1)= \frac{1}{2}

Therefore the slope of equation (2) is(m_2)= -2

If two lines are perpendicular, when we multiply their slope we get -1.

therefore,

m_1. m_2 =\frac{1}{2}. (-2) = -1

Therefore they are perpendicular.

4 0
3 years ago
There are 23 people in this class. what is the probability that at least 2 of the people in the class share the same birthday? s
BlackZzzverrR [31]
23/2 = 0.08
0.08 = 8/100 or 8%
4 0
3 years ago
A golfer hits an errant tee shot that lands in the rough. A marker in the center of the fairway is 150 yards from the center of
Gwar [14]

\bold{\huge{\underline{ Solution}}}

<h3><u>Given </u><u>:</u><u>-</u></h3>

  • A marker in the center of the fairway is 150 yards away from the centre of the green
  • While standing on the marker and facing the green, the golfer turns 100° towards his ball
  • Then he peces off 30 yards to his ball

<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>distance </u><u>between </u><u>the </u><u>golf </u><u>ball </u><u>and </u><u>the </u><u>center </u><u>of </u><u>the </u><u>green </u><u>.</u>

<h3><u>Let's </u><u> </u><u>Begin </u><u>:</u><u>-</u></h3>

Let assume that the distance between the golf ball and central of green is x

<u>Here</u><u>, </u>

  • Distance between marker and centre of green is 150 yards
  • <u>That </u><u>is</u><u>, </u>Height = 150 yards
  • For facing the green , The golfer turns 100° towards his ball
  • <u>That </u><u>is</u><u>, </u>Angle = 100°
  • The golfer peces off 30 yards to his ball
  • <u>That </u><u>is</u><u>, </u>Base = 30 yards

<u>According </u><u>to </u><u>the </u><u>law </u><u>of </u><u>cosine </u><u>:</u><u>-</u>

\bold{\red{ a^{2} = b^{2} + c^{2} - 2ABcos}}{\bold{\red{\theta}}}

  • Here, a = perpendicular height
  • b = base
  • c = hypotenuse
  • cos theta = Angle of cosine

<u>So</u><u>, </u><u> </u><u>For </u><u>Hypotenuse </u><u>law </u><u>of </u><u>cosine </u><u>will </u><u>be </u><u>:</u><u>-</u>

\sf{ c^{2} = a^{2} + b^{2} - 2ABcos}{\sf{\theta}}

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ x^{2} = (150)^{2} + (30)^{2} - 2(150)(30)cos}{\sf{100°}}

\sf{ x^{2} = 22500 + 900 - 900cos}{\sf{\times{\dfrac{5π}{9}}}}

\sf{ x^{2} = 22500 + 900 - 900( - 0.174)}

\sf{ x^{2} = 22500 + 900 + 156.6}

\sf{ x^{2} = 23556.6}

\bold{ x = 153.48\: yards }

Hence, The distance between the ball and the center of green is 153.48 or 153.5 yards

5 0
2 years ago
-8(p - 4) = 96 solve for p
Gwar [14]

Answer:

-8

Step-by-step explanation:

3 0
3 years ago
Solve. Good luck! Please do not try to google this.
Elena L [17]
\frac{x^{2} + x - 2}{6x^{2} - 3x} = \sqrt{2x} + \frac{3x^{2}}{2}
\frac{x^{2} + 2x - x - 2}{3x(x) - 3x(1)} = \frac{2\sqrt{2x}}{2} + \frac{3x^{2}}{2}
\frac{x(x) + x(2) - 1(x) - 1(2)}{3x(x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}
\frac{x(x + 2) - 1(x + 2)}{3x(2x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}
\frac{(x - 1)(x + 2)}{3x(2x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}
\frac{(x - 1)(x + 2)}{3x(2x - 1)} = \frac{2\sqrt{2x} + 3x^{2}}{2}
3x(2x - 1)(2\sqrt{2x} + 3x^{2}) = 2(x + 2)(x - 1)
3x(2x(2\sqrt{2x} + 3x^{2}) - 1(2\sqrt{2x} + 3x^{2}) = 2(x(x - 1) + 2(x - 1))
3x(2x(2\sqrt{2x}) + 2x(3x^{2}) - 1(2\sqrt{2x}) - 1(3x^{2})) = 2(x(x) - x(1) + 2(x) - 2(1)
3x(4x\sqrt{2x} + 6x^{3} - 2\sqrt{2x} - 3x^{2}) = 2(x^{2} - x + 2x - 2)
3x(4x\sqrt{2x} - 2\sqrt{2x} + 6x^{3} - 3x^{2}) = 2(x^{2} + x - 2)
3x(4x\sqrt{2x}) - 3x(2\sqrt{2x}) + 3x(6x^{3}) - 3x(3x^{2}) = 2(x^{2}) + 2(x) - 2(2)
12x^{2}\sqrt{2x} - 6x\sqrt{2x} + 18x^{4} - 9x^{3} = 2x^{2} + 2x - 4
12x^{2}\sqrt{2x} - 6x\sqrt{2x} = -18x^{4} + 9x^{3} + 2x^{2} + 2x - 4
6x\sqrt{2x}(2x) - 6x\sqrt{2x}(1) = -9x^{3}(2x) - 9x^{3}(-1) + 2(x^{2}) + 2(x) - 2(2)
6x\sqrt{2x}(2x - 1) = -9x^{3}(2x - 1) + 2(x^{2} + x - 2)
5 0
3 years ago
Other questions:
  • A movie theater problem I need help with
    6·2 answers
  • Sinea spent $8 on games and $12 on souveniers. if she spends $26 on games, how much will she spend on souveniers?
    9·1 answer
  • Next number <br> 1 2 8 48 384
    8·1 answer
  • If the ordered pairs graphed are all equivalent ratios, what ordered pair is missing?
    6·2 answers
  • Find the value of a in the diagram of the right triangle. Round to the nearest tenth.
    11·1 answer
  • Two non-parallel lines intersect at a<br> A. point<br> B. line<br> C. plane<br> D.none of these
    5·2 answers
  • Help me please i wish i can get somehelp
    10·1 answer
  • 9 ten thousand ➗10 unit form
    13·1 answer
  • Evaluate 17 + 70/x when x = 14.
    12·1 answer
  • Pleaseeee helpppp needdd done asapppp…
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!