Let O be the center of a circle. If <span>the measure of arc RS is 84 degrees, then m∠SOR=84^{0}. The triangle SOR is isoscales (because SO=OR as radii), so m∠RSO=m∠ORS=(180^{0}-84^{0}):2=48^{0}.
</span>
Line RU is tangent to the circle in point R, this means that m∠ORU=90^{0}.
Consider the triangle SRU. m∠RSU=30^{0} and m∠SRU=48^{0}+90^{0}=138^{0}, then m∠RUS=180^{0}-30^{0}-138^{0}=12^{0}.
ANSWER: Correct choice B - 12^{0}.
<span />
Answer:
The answer to this question is 19.
Step-by-step explanation:
Given that :
f(x)=13.
f'(x)=3. 1 ≤ x ≤ 3.
Integrate
∫f'(x) dx=∫3 dx
f(x)=3x+c 1 ≤ x ≤ 3.
f(1)= 3+c
c=13-3 =10.
f(x)=3x+10 1 ≤ x ≤ 3.
now ,
f(3)=3(3)+10=19.
So f(3) is at least 19.
The slope is 3 and the y-intercept is (0, 9.4)
3p² - 2p - 5 = 0
3p² + 3p - 5p - 5 = 0
3p(p + 1) -5(p + 1) = 0
(3p - 5)(p + 1) = 0
p = 5/3 or -1
Hope this helps!
Known :
h = 10
d = 3
Asked :
V = ...?
Answer :
V = ¼πd²h
= ¼ × 3.14 × 3² × 10
= ¼ × 3.14 × 9 × 10
= <u>7</u><u>0</u><u>.</u><u>6</u><u>5</u>
<em>Hope </em><em>it </em><em>helpful </em><em>and </em><em>useful </em><em>:</em><em>)</em>