Answer:
$180000
Step-by-step explanation:
Let's c be the number of chair and d be the number of desks.
The constraint functions:
- Unit of wood available 4d + 3c <= 2000 or d <= 500 - 0.75c
- Number of chairs being at least twice of desks c >= 2d or d <= 0.5c
c >= 0
d >= 0
The objective function is to maximize the profit function
P (c,d) = 400d + 250c
We draw the 2 constraint functions (500 - 0.75c and 0.5c) on a c-d coordinates (witch c being the horizontal axis and d being the vertical axis) and find the intersection point 0.5c = 500 - 0.75c
1.25c = 500
c = 400 and d = 0.5c = 200 so P(400, 200) = $250*400 + $400*200 = $180,000
The 500 - 0.75c intersect with c-axis at d = 0 and c = 500 / 0.75 = 666 and P(666,0) = 666*250 = $166,500
So based on the available zones in the chart we can conclude that the maximum profit we can get is $180000
In the graph you can see the point are crossing Y -1 and x= 2,
x-y=xy
2-1=1
Y=1
In this question the answer is C
hope this helped
- Quadratic Formula:
, with a = x^2 coefficient, b = x coefficient, and c = constant.
Firstly, starting with the y-intercept. To find the y-intercept, set the x variable to zero and solve as such:

<u>Your y-intercept is (0,-51).</u>
Next, using our equation plug the appropriate values into the quadratic formula:

Next, solve the multiplications and exponent:

Next, solve the addition:

Now, simplify the radical using the product rule of radicals as such:
- Product Rule of Radicals: √ab = √a × √b
√1224 = √12 × √102 = √2 × √6 × √6 × √17 = 6 × √2 × √17 = 6√34

Next, divide:

<u>The exact values of your x-intercepts are (-4 + √34, 0) and (-4 - √34, 0).</u>
Now to find the approximate values, solve this twice: once with the + symbol and once with the - symbol:

<u>The approximate values of your x-intercepts (rounded to the hundredths) are (1.83,0) and (-9.83,0).</u>