1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
2 years ago
8

A farmer wants to fence an area of 13.5 million square feet in a rectangular field and then divide it in half with a fence paral

lel to one of the sides of the rectangle. Let y represent the length (in feet) of a side perpendicular to the dividing fence, and let x represent the length (in feet) of a side parallel to the dividing fence. Let F represent the length of fencing in feet. Write an equation that represents F in terms of the variable x.
Mathematics
1 answer:
denis23 [38]2 years ago
4 0

Answer:

  F = 3x +(2.7×10^7)/x

Step-by-step explanation:

The formulas for area and perimeter of a rectangle can be used to find the desired function.

<h3>Area</h3>

The area of the rectangle will be the product of its dimensions:

  A = LW

Using the given values, we have ...

  13.5×10^6 = xy

Solving for y gives ...

  y = (13.5×10^6)/x

<h3>Perimeter</h3>

The perimeter of the rectangle is the sum of the side lengths:

  P = 2(L+W) = 2(x+y)

<h3>Fence length</h3>

The total amount of fence required is the perimeter plus one more section that is x feet long.

  F = 2(x +y) +x = 3x +2y

Substituting for y, we have a function of x:

  F = 3x +(2.7×10^7)/x

__

<em>Additional comment</em>

The length of fence required is minimized for x=3000. The overall size of that fenced area is x=3000 ft by y=4500 ft. Each half is 3000 ft by 2250 ft. Half of the total 18000 ft of fence is used for each of the perpendicular directions: 3x=2y=9000 ft.

You might be interested in
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
Find the slope of the line that passes through (9,8) and (6,4)​
ella [17]

Answer:

the slope is 4/3

Step-by-step explanation:

your welcome :D

3 0
3 years ago
Read 2 more answers
Select all statements that are true about the linear equation. y=−2x 4y=−2x 4 the point (0, 2)(0, 2) lies on the graph of the eq
Wittaler [7]
Y = -2x + 4

The graph of the equation is the set of points that are solutions to the equation.

The equation 2x + y = 4 is represented by the same graph.

For point (1, 2): 2 = -2(1) + 4 = -2 + 4 = 2.
Therefore, the point (1, 2) lies on the the graph of the equation.

For the point (0, 2): 2 ≠ -2(0) + 4 = 0 + 4 = 4.
Therefore, the point (0, 2) DOES NOT lie on the graph of the equation.
8 0
3 years ago
What is the ratio of 2 cups of water for 1 cup of rice
alexdok [17]

Answer:

2 to 1; 2:1

Step-by-step explanation:

There are two cups of water and one cup of rice. It's a two to one ratio.

5 0
3 years ago
Read 2 more answers
Brainliest?????! Answer ASAP!
Helen [10]

Answer:

12

Step-by-step explanation:

12

8 0
3 years ago
Other questions:
  • 987% in decimal form.
    6·2 answers
  • PLZZZZZZZ NEED HELP!!!!!!!!!
    5·1 answer
  • What are the x intercepts of the equation function? Y=x^2+2x-1
    10·1 answer
  • How do you find the volume for these??
    6·1 answer
  • X + x + 3 + x / 2 equals 23
    10·1 answer
  • If there are 40 entries to the science fair how man ways can the students get 1st, 2nd, and 3rd
    10·1 answer
  • Which expression can be used to find the total number of bagels in 3 boxes if each box has a dozen bagels?
    7·1 answer
  • What is the equivalent percent of the number 0.895? 0.895 % 89.5 % 8.95 % 895 %
    13·2 answers
  • 2x-5Y=16<br> X+4Y=-5 solve<br>​
    13·1 answer
  • Determine a series of transformations that would map Figure <br> F onto G
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!