Answer:
idfk Imao
Step-by-step explanation:
try working on drawing it out and then finding the with x hype
Answer:
one point
Step-by-step explanation:
A system of two linear equations will have one point in the solution set if the slopes of the lines are different.
__
When the equations are written in the same form, the ratio of x-coefficient to y-coefficient is related to the slope. It will be different if there is one solution.
- ratio for first equation: 1/1 = 1
- ratio for second equation: 1/-1 = -1
These lines have <em>different slopes</em>, so there is one solution to the system of equations.
_____
<em>Additional comment</em>
When the equations are in slope-intercept form with the y-coefficient equal to 1, the x-coefficient is the slope.
y = mx +b . . . . . slope = m
When the equations are in standard form (as in this problem), the ratio of x- to y-coefficient is the opposite of the slope.
ax +by = c . . . . . slope = -a/b
As long as the equations are in the same form, the slopes can be compared by comparing the ratios of coefficients.
__
If the slopes are the same, the lines may be either parallel (empty solution set) or coincident (infinite solution set). When the equations are in the same form with reduced coefficients, the lines will be coincident if they are the same equation.
<u>the correct question is</u>
The denarius was a unit of currency in ancient rome. Suppose it costs the roman government 10 denarii per day to support 4 legionaries and 4 archers. It only costs 5 denarii per day to support 2 legionaries and 2 archers. Use a system of linear equations in two variables. Can we solve for a unique cost for each soldier?
Let
x-------> the cost to support a legionary per day
y-------> the cost to support an archer per day
we know that
4x+4y=10 ---------> equation 1
2x+2y=5 ---------> equation 2
If you multiply equation 1 by 2
2*(2x+2y)=2*5-----------> 4x+4y=10
so
equation 1 and equation 2 are the same
The system has infinite solutions-------> Is a consistent dependent system
therefore
<u>the answer is</u>
We cannot solve for a unique cost for each soldier, because there are infinite solutions.
Slope is 2/3
intercept is (0,3)
y=2/3 x + 3