1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anastassius [24]
2 years ago
6

Draw out a two column proof for each problem below. Complete all problems on one page and upload ONE photo of the entire assignm

ent Make sure your file/image is clear (not blurry) and easy to read. Problem 1. Congruent Triangle Proof (10 Points) Given: NQ is the bisector of MNP and NMQ ~ ZNPQ| Prove: A MNQA PNQ 0 Problem 2. Proof Involving CPCTC (14 Points) Given: S is the midpoint of QR QR PS and RSP and QSP are right angles. Prove: PR PQ S 0​

Mathematics
1 answer:
Hunter-Best [27]2 years ago
3 0

Two or more <u>triangles</u> are <em>congruent </em>if on comparison, they have equal lengths of <u>sides,</u> and measure of <u>angles</u>.

Therefore, the required proofs for each question are shown below:

Problem 1:

<em>Congruent triangles</em> are <u>triangles</u> with equal lengths of <em>corresponding</em> <u>sides</u> and measures of internal <u>angles</u>.

Thus,

                     STATEMENT                          REASON

1. <NMQ ≅ <NPQ                            Any point on a <em>perpendicular bisector</em>      

                                                        makes <u>equal</u> measure of angle with the

                                                        two ends of the<em> line</em> segment.

2. NQ ⊥ MP                                     Definition of a<u> line</u>.

3. MQ ≅ PQ                                     <em>Equal segments</em> of a bisected <u>line</u>.

4. MN ≅ PN                                     Any point on a <em>perpendicular bisector </em>    

                                                        is at the same <u>distance</u> to the

                                                        two ends of the <em>line segment</em>.

5. <MNQ ≅ <PNQ                           <u>Equal</u> measure of the <u>bisected</u> angle.

Problem 2:

A line <em>segment</em> is the shortest <u>distance</u> between two points.

            STATEMENTS                    REASONS

1. m<PSR  ≅ m<PSQ                A <em>perpendicular bisector </em>is always at a right  

                                                  angle to the <u>bisected</u> <em>line segment</em>.

2. m<RPS ≅ m<QPS                 Equal measure of the <u>bisected</u> <em>angle</em>.

3. RS ≅ QS                                Property of a <u>bisected</u> <em>line</em> segment.

4. PR ≅ PQ                                Any point on a <em>perpendicular bisector </em>    

                                                  is at the same <u>distance</u> to the two ends of  

                                                 the <u>line</u> segment.

For more clarifications on the perpendicular bisector of a line segment, visit: brainly.com/question/12475568

#SPJ1

You might be interested in
In 1990, California switched from a 6/49 lottery to a 6/53 lottery. Later, the state switched again to a 6/51 lottery. (a) Find
zalisa [80]

Answer:

(a) 9.9321*10^{-11}

(b) 6.0498*10^{-11}

(c) 7.7120^{-11}

(d) 1.6417 times more probable

Step-by-step explanation:

(a) The probability of winning a 6/49 lottery is given by:

P = \frac{1}{49*48*47*46*45*44} =9.9321*10^{-11}

(b) The probability of winning a 6/53 lottery is given by:

P = \frac{1}{53*52*51*50*49*48} =6.0498*10^{-11}

(c) The probability of winning a 6/51 lottery is given by:

P = \frac{1}{51*50*49*48*47*46} =7.7120^{-11}

(d) The ratio between the probabilities of winning the 6/49 lottery and winning the 6/53 lottery is:

r=\frac{9.9321*10^{-11}}{6.0498^{-11}}\\r=1.6417

It is 1.6417 times more probable.

8 0
4 years ago
A ride on the roller coaster costs 4 tickets while the boat ride only costs 3 tickets. Michael went on the two rides a total of
True [87]
Let x = roller coaster ticket
let y = boat ride ticket

x + y = 10
4x + 3y = 37

x = 10 - y
4x + 3y = 37
4(10-y) + 3y = 37
40 - 4y + 3y = 37
-y = 37 - 40
-y = -3
y = -3/-1
y = 3

x = 10 - y
x = 10 - 3
x = 7

x = 7 ; y = 3

4x + 3y = 37
4(7) + 3(3) = 37
28 + 9 = 37
37 = 37 
6 0
3 years ago
What is the value of X?
Marizza181 [45]

Answer:

30

Step-by-step explanation:

6 0
3 years ago
Please help me on this math question
professor190 [17]
A-yes
B-No
C-yes
 Between A-C
4 0
3 years ago
HELP PLEASE!!
kow [346]

Answer:

3400 ft

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • QUICK HELP ME!!!!!!!!!
    11·1 answer
  • A bicycle manufacturing company makes a particular type of bike. Each child bike requires 4 hours to build and 4 hours to test.
    8·1 answer
  • Round to the nearest ten-thousandths place. 74.12365 = _____
    5·2 answers
  • 125cm to 87.5 cm percent of change
    13·1 answer
  • How much does 3.75 kg of chocolate cost if 0.7 kg of it costs $4.20?
    15·2 answers
  • ALGEBRA 1 HELP URGENT PLEASE
    15·1 answer
  • What is the measurement of Angle O in parallelogram LMNO. When angle L is (x+40) and angle O is (3x)
    5·2 answers
  • What would be the solution to the system of equations: y= -x + 4 y= 3x<br>​
    5·1 answer
  • PLEASE HELP PLEASEEEEE
    7·1 answer
  • HELP PLEASE
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!