1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga55 [171]
2 years ago
8

Rewrite the following integral in spherical coordinates.​

Mathematics
1 answer:
lora16 [44]2 years ago
4 0

In cylindrical coordinates, we have r^2=x^2+y^2, so that

z = \pm \sqrt{2-r^2} = \pm \sqrt{2-x^2-y^2}

correspond to the upper and lower halves of a sphere with radius \sqrt2. In spherical coordinates, this sphere is \rho=\sqrt2.

1 \le r \le \sqrt2 means our region is between two cylinders with radius 1 and \sqrt2. In spherical coordinates, the inner cylinder has equation

x^2+y^2 = 1 \implies \rho^2\cos^2(\theta) \sin^2(\phi) + \rho^2\sin^2(\theta) \sin^2(\phi) = \rho^2 \sin^2(\phi) = 1 \\\\ \implies \rho^2 = \csc^2(\phi) \\\\ \implies \rho = \csc(\phi)

This cylinder meets the sphere when

x^2 + y^2 + z^2 = 1 + z^2 = 2 \implies z^2 = 1 \\\\ \implies \rho^2 \cos^2(\phi) = 1 \\\\ \implies \rho^2 = \sec^2(\phi) \\\\ \implies \rho = \sec(\phi)

which occurs at

\csc(\phi) = \sec(\phi) \implies \tan(\phi) = 1 \implies \phi = \dfrac\pi4+n\pi

where n\in\Bbb Z. Then \frac\pi4\le\phi\le\frac{3\pi}4.

The volume element transforms to

dx\,dy\,dz = r\,dr\,d\theta\,dz = \rho^2 \sin(\phi) \, d\rho \, d\theta \, d\phi

Putting everything together, we have

\displaystyle \int_0^{2\pi} \int_1^{\sqrt2} \int_{-\sqrt{2-r^2}}^{\sqrt{2-r^2}} r \, dz \, dr \, d\theta = \boxed{\int_0^{2\pi} \int_{\pi/4}^{3\pi/4} \int_{\csc(\phi)}^{\sqrt2} \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta} = \frac{4\pi}3

You might be interested in
Lucy obtains a 1-year payday loan for $5000.00 at 12% interest compounded monthly. To get the loan, she
AURORKA [14]

Answer:

An origination fee is typically 0.5% to 1% of the loan amount and is charged by a lender as compensation for processing a loan application. Origination fees are sometimes negotiable, but reducing them or avoiding them usually means paying a higher interest rate over the life of the loan

Step-by-step explanation:

3 0
3 years ago
A boy's age is three times the age of his sister. Their ages together total 16 years.
jok3333 [9.3K]

Answer:

Sister's age: 4

Brother's age: 12

8 0
2 years ago
Keith plans to buy a car in the future. He currently has $3,000 saved up to buy the car. How much money (x) does he need to save
iVinArrow [24]
708.33333333 or 708.4 $ a month
4 0
3 years ago
The mean height of women in a country (ages 20-29) is 64 4 inches A random sample of 50 women in this age group is selected What
Simora [160]

Answer:

0.0721 = 7.21% probability that the mean height for the sample is greater than 65 inches.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution:

Problems of normal distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

Mean of 64.4 inches, standard deviation of 2.91

This means that \mu = 64.4, \sigma = 2.91

Sample of 50 women

This means that n = 50, s = \frac{2.91}{\sqrt{50}}

What is the probability that the mean height for the sample is greater than 65 inches?

This is 1 subtracted by the p-value of Z when X = 65. So

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{65 - 64.4}{\frac{2.91}{\sqrt{50}}}

Z = 1.46

Z = 1.46 has a p-value of 0.9279

1 - 0.9279 = 0.0721

0.0721 = 7.21% probability that the mean height for the sample is greater than 65 inches.

8 0
3 years ago
Which diagram represents the hypothesis of the converse of corresponding angles theorem?
BabaBlast [244]

Answer:

the first diagram

Step-by-step explanation:

first one

5 0
3 years ago
Other questions:
  • Rewrite 0.01 as a power of 10
    10·2 answers
  • How do you factor: 5x^3+30x^2+45x (please show steps)
    6·2 answers
  • The perimeter of a triangle is 35 feet. One side of the triangle is five feet longer than the second side. The third side is thr
    9·1 answer
  • Simplify 7 + (−3). plz help
    11·1 answer
  • 100 points
    14·2 answers
  • The table shows the relationship between the number of Calories Lucie burns while jumping rope and the number of minutes she jum
    8·1 answer
  • What is the answer to 7/8 times 2/9
    9·2 answers
  • Solve for q. <br><br> 16pq^2 =25
    10·2 answers
  • 8x+10y=12 solve for Y show your work
    5·2 answers
  • • A certain test consists of multiple-choice questions
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!