At the start, the tank contains
(0.02 g/L) * (1000 L) = 20 g
of chlorine. Let <em>c</em> (<em>t</em> ) denote the amount of chlorine (in grams) in the tank at time <em>t </em>.
Pure water is pumped into the tank, so no chlorine is flowing into it, but is flowing out at a rate of
(<em>c</em> (<em>t</em> )/(1000 + (10 - 25)<em>t</em> ) g/L) * (25 L/s) = 5<em>c</em> (<em>t</em> ) /(200 - 3<em>t</em> ) g/s
In case it's unclear why this is the case:
The amount of liquid in the tank at the start is 1000 L. If water is pumped in at a rate of 10 L/s, then after <em>t</em> s there will be (1000 + 10<em>t</em> ) L of liquid in the tank. But we're also removing 25 L from the tank per second, so there is a net "gain" of 10 - 25 = -15 L of liquid each second. So the volume of liquid in the tank at time <em>t</em> is (1000 - 15<em>t </em>) L. Then the concentration of chlorine per unit volume is <em>c</em> (<em>t</em> ) divided by this volume.
So the amount of chlorine in the tank changes according to

which is a linear equation. Move the non-derivative term to the left, then multiply both sides by the integrating factor 1/(200 - 5<em>t</em> )^(5/3), then integrate both sides to solve for <em>c</em> (<em>t</em> ):


![\dfrac{\mathrm d}{\mathrm dt}\left[\dfrac{c(t)}{(200-3t)^{5/3}}\right]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5B%5Cdfrac%7Bc%28t%29%7D%7B%28200-3t%29%5E%7B5%2F3%7D%7D%5Cright%5D%3D0)


There are 20 g of chlorine at the start, so <em>c</em> (0) = 20. Use this to solve for <em>C</em> :

![\implies\boxed{c(t)=\dfrac1{200}\sqrt[3]{\dfrac{(200-3t)^5}5}}](https://tex.z-dn.net/?f=%5Cimplies%5Cboxed%7Bc%28t%29%3D%5Cdfrac1%7B200%7D%5Csqrt%5B3%5D%7B%5Cdfrac%7B%28200-3t%29%5E5%7D5%7D%7D)
Answer:
3%
Step-by-step explanation:
This equation represents exponential decay. Whenever the base is less than 1, the function represents decay. When the base is greater than 1, the function represents growth. In this case, the base is .97 which is less than 1, representing decay.
The formula for exponential decay is y=a(1-r)x.
r is the decay rate, expressed as a decimal.
In this case, r = .03 which represents 3%!
The commutative property of addition means that when you see a problem, you change the order. The co in commutative means change order. That's what my teacher told me.
Write both sides as powers of
:

since
. Then
