Answer:(2x - 5)(3x + 1)
Step-by-step explanation:
6x^2 - 13x - 5
6x^2 + 2x - 15x - 5
2x (3x + 1) - 5 (3x + 1)
(2x - 5)(3x + 1)
1.
Calculate the sum
5x - 10 + 7 = 65 - 20x + 32
Move terms
5x - 3 = 97 - 20x
Collect the like terms and calculate
5x + 20x = 97 +3
Divide both sides by 25
25x = 100
X= 4 ANSWER
I skipped some steps because it would be too long :/
2.
Multiply parenthesis by 8
20x>8(4x - 5) -20
Calculate
20x>32x - 40 - 20
Move variable to the left
20x>32x-60
Collect like terms
20x - 32x > -60
Divide both sides by -12
-12x>-60
X<5 ANSWER
the assumption being that the endpoints are two continuous points in the pentagon, Check picture below.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{[2-(-1)]^2+[3-4]^2}\implies d=\sqrt{(2+1)^2+(3-4)^2} \\\\\\ d=\sqrt{9+1}\implies d=\sqrt{10}~\hfill \stackrel{\stackrel{~\hfill \stackrel{\textit{5 sides}}{}}{\textit{perimeter of the pentagon}}}{5\sqrt{10}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B4%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B2%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B%5B2-%28-1%29%5D%5E2%2B%5B3-4%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%282%2B1%29%5E2%2B%283-4%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B9%2B1%7D%5Cimplies%20d%3D%5Csqrt%7B10%7D~%5Chfill%20%5Cstackrel%7B%5Cstackrel%7B~%5Chfill%20%5Cstackrel%7B%5Ctextit%7B5%20sides%7D%7D%7B%7D%7D%7B%5Ctextit%7Bperimeter%20of%20the%20pentagon%7D%7D%7D%7B5%5Csqrt%7B10%7D%7D)
Answer: it is a direct variation.
Justification:
In a direct variation the variables are related by a proportionality constant in this way:
y = k x
Tthan means that the value of y is always the product of a constant times the value of x.
The situation discribed for the coal may be written as:
number of tons of coal burned: c
number of hours: h
⇒ c = k × h
Which is that you can calcualte the number of tons of coal burned at any time, once you know the proportionality constant k.