List all the multiples of the numbers:
2: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100
5: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100
6: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96
9: 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99
The least common multiple of 2, 5, 6, and 9 is 90.
Using the <em>normal distribution and the central limit theorem</em>, it is found that there is a 0.1335 = 13.35% probability that 100 randomly selected students will have a mean SAT II Math score greater than 670.
<h3>Normal Probability Distribution</h3>
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:

- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation
.
In this problem:
- The mean is of 660, hence
.
- The standard deviation is of 90, hence
.
- A sample of 100 is taken, hence
.
The probability that 100 randomly selected students will have a mean SAT II Math score greater than 670 is <u>1 subtracted by the p-value of Z when X = 670</u>, hence:

By the Central Limit Theorem



has a p-value of 0.8665.
1 - 0.8665 = 0.1335.
0.1335 = 13.35% probability that 100 randomly selected students will have a mean SAT II Math score greater than 670.
To learn more about the <em>normal distribution and the central limit theorem</em>, you can take a look at brainly.com/question/24663213