Answer:
B. Organisms in each ecological system have evolved in that system and have adaptations suited for that environment.
Explanation:
According to natural selection theory, organisms need to continuously adapt and evolve within an environment or risk being wiped away from that environment.
Organisms that are not able to adapt to an environment are gradually replaced by those that have the capability to adapt and survive in that environment.
Those that are able to survive go ahead to reproduce and give rise to offspring with inherent ability to survive while those that cannot survive die off.
The correct option is B.
.............................Correct.
Answer:
(C) Aminoacyl-tRNA synthetases have an additional active site that binds to non-cognate tRNAs. The tRNAs that bind to this second active are hydrolyzed and released from the enzyme.
Explanation:
In case of translation, proof reading is done by aminoacyl-tRNA synthetases only. Aminoacyl-tRNA synthetases have two mechanisms to avoid error during translation which are mentioned as under:
<u>(1) Chemical proof reading:</u> Incorrect amino acids rather than being hydrolyzed in catalytic pocket get hydrolyzed in editing pocket and thus they hardly get attached to tRNA.
For example: For distinguishing similar amino acids like isoleucine and valine, isoleucyl-tRNA synthetase uses a second active site which is meant for only valine not for isoleucine. In this particular site, valine which had entered the enzyme is cleaved away with the help of editing reaction after which the enzyme is well prepared to process isoleucine which is the correct amino acid for this enzyme.
<u>(2) Kinetic proof reading: </u>Even if an incorrect amino acid has entered a particular aminoacyl-tRNA synthetase, it does not cause appropriate conformational change in the enzyme because of which the incorrect amino acid loosens from the enzyme and does not get incorporated.
Note: In this example, only chemical proof reading is mentioned not kinetic proof reading.
Griffith's experiment worked with two types of pneumococcal bacteria (a rough type and a smooth type) and identified that a "transforming principle" could transform them from one type to another.
At first, bacteriologists suspected the transforming factor was a protein. The "transforming principle" could be precipitated with alcohol, which showed that it was not a carbohydrate. But Avery and McCarty observed that proteases (enzymes that degrade proteins) did not destroy the transforming principle. Neither did lipases (enzymes that digest lipids). Later they found that the transforming substance was made of nucleic acids but ribonuclease (which digests RNA) did not inactivate the substance. By this method, they were able to obtain small amounts of highly purified transforming principle, which they could then analyze through other tests to determine its identity, which corresponded to DNA.