1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
3 years ago
15

How to solve a classmate draws a parallelogramfor whichone side is twice as long as the other. If one side is 26 units, what are

all the possible lengths of the perimeter?
Mathematics
1 answer:
Mandarinka [93]3 years ago
6 0

Answer: length when perimeter is 78 units: a=26 ,b=13

Length when perimeter is 156 units:

a=26 , b=52

Step-by-step explanation: Given one side =26 , the other is twice as long

Perimeter of a parallelogram =2(a+b)

Using perimeter=78= 2(26+b)

78=52+2b

78-52=2b

26=2b

b=26/2

b=13

When perimeter is 78 units a=26,b=13

Using perimeter =156 units

156=2(26+b)

156=52+2b

156-52=2b

104=2b

b=104/2

b=52

You might be interested in
14 5 18 24 15 28 34 __
Volgvan
This sequence seems to apply -9, +13, +6 repeatedly.
So after the 34, the -9 has to be applied. The next number would be 25.
5 0
3 years ago
Read 2 more answers
Question in pictures
yan [13]

The derivatives of the functions are listed below:

(a) f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}    

(b) f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }

(c) f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²    

(d) f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]

(e) f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶

(f) f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]

(g) f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)

(h) f'(x) = cot x + cos (㏑ x) · (1 / x)

<h3>How to find the first derivative of a group of functions</h3>

In this question we must obtain the <em>first</em> derivatives of each expression by applying <em>differentiation</em> rules:

(a) f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}

  1. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4 \cdot x - \frac{x}{5} + \frac{5}{x} - \sqrt[11]{2022}        Given
  2. f(x) = 2 \cdot x^{-\frac{7}{2} } - x^{2} + 4\cdot x - \frac{x}{5} + 5 \cdot x^{-1} - \sqrt[11]{2022}      Definition of power
  3. f'(x) = -7\cdot x^{-\frac{9}{2} }- 2\cdot x + 4 - \frac{1}{5} - 5\cdot x^{-2}       Derivative of constant and power functions / Derivative of an addition of functions / Result

(b) f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}

  1. f(x) = \sqrt[3]{x + 3} \cdot \sqrt[3]{x + 5}              Given
  2. f(x) = (x + 3)^{\frac{1}{3} }\cdot (x + 5)^{\frac{1}{3} }           Definition of power
  3. f'(x) = \frac{1}{3}\cdot (x + 3)^{-\frac{2}{3} }\cdot (x+ 5)^{\frac{1}{3} } + \frac{1}{3} \cdot (x + 5)^{-\frac{2}{3} } \cdot (x + 3)^{\frac{1}{3} }        Derivative of a product of functions / Derivative of power function / Rule of chain / Result

(c) f(x) = (sin x - cos x) / (x² - 1)

  1. f(x) = (sin x - cos x) / (x² - 1)          Given
  2. f'(x) = [(cos x + sin x) · (x² - 1) - (sin x - cos x) · (2 · x)] / (x² - 1)²       Derivative of cosine / Derivative of sine / Derivative of power function / Derivative of a constant / Derivative of a division of functions / Result

(d) f(x) = 5ˣ · ㏒₅ x

  1. f(x) = 5ˣ · ㏒₅ x             Given
  2. f'(x) = (5ˣ · ㏑ 5) · ㏒₅ x + 5ˣ · [1 / (x · ㏑ 5)]       Derivative of an exponential function / Derivative of a logarithmic function / Derivative of a product of functions / Result

(e) f(x) = (x⁻⁵ + √3)⁻⁹

  1. f(x) = (x⁻⁵ + √3)⁻⁹          Given
  2. f'(x) = - 9 · (x⁻⁵ + √3)⁻⁸ · (- 5) · x⁻⁶       Rule of chain / Derivative of sum of functions / Derivative of power function / Derivative of constant function
  3. f'(x) = 45 · (x⁻⁵ + √3)⁻⁸ · x⁻⁶     Associative and commutative properties / Definition of multiplication / Result

(f) f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}

  1. f(x) = 7^{x\cdot \ln x} + (x \cdot \ln x)^{7}         Given
  2. f'(x) = 7^{x\cdot\ln x} \cdot \ln 7 \cdot (\ln x + 1) + 7\cdot (x\cdot \ln x)^{6}\cdot (\ln x + 1)         Rule of chain / Derivative of sum of functions / Derivative of multiplication of functions / Derivative of logarithmic functions / Derivative of potential functions
  3. f'(x) = (\ln x + 1)\cdot [7^{x\cdot \ln x \cdot \ln 7}+7\cdot (x\cdot \ln x)^{6}]        Distributive property / Result

(g) f(x) = \arccos^{2} x - \arctan (\sqrt{x})

  1. f(x) = \arccos^{2} x - \arctan (\sqrt{x})        Given
  2. f'(x) = -2\cdot \arccos x \cdot \left(\frac{1}{\sqrt{1 - x^{2}}} \right) -  \left(\frac{1}{1 + x} \right) \cdot \left(\frac{1}{2}  \cdot x^{-\frac{1}{2} }\right)      Derivative of the subtraction of functions / Derivative of arccosine / Derivative of arctangent / Rule of chain / Derivative of power functions / Result

(h) f(x) = ㏑ (sin x) + sin (㏑ x)

  1. f(x) = ㏑ (sin x) + sin (㏑ x)          Given
  2. f'(x) = (1 / sin x) · cos x + cos (㏑ x) · (1 / x)        Rule of chain / Derivative of sine / Derivative of natural logarithm /Derivative of addition of functions
  3. f'(x) = cot x + cos (㏑ x) · (1 / x)      cot x = cos x / sin x / Result

To learn more on derivatives: brainly.com/question/23847661

#SPJ1

7 0
1 year ago
Mrs.Anderson writes a check for 10.50 to each of her four nieces. What will be the total change in Mrs.Andersons checking accoun
frez [133]

Answer:

-42

Step-by-step explanation:

Since she is handing them equally to her four nieces, then she has to do 10.50 x 4

= 42 since they are asking how much checks were cashed, the answer will be negative so therefore the answer is $-42

5 0
2 years ago
What is the GCF of 14 and 42?<br><br> Thanks!
Morgarella [4.7K]
14 is the GCF because 42 is divisible by 14
8 0
3 years ago
Read 2 more answers
What is the solution to -1-7? + 4 5 6 9 10 2 -10-9-8-7 6-5- 4 -3-2 1 -8 O 6 6 O8​
Amiraneli [1.4K]
I believe the answer is -1
4 0
3 years ago
Other questions:
  • Which of the following statements is true?
    12·2 answers
  • Show that if A is​ invertible, then det Upper A Superscript negative 1det A−1equals=StartFraction 1 Over det Upper A EndFraction
    9·1 answer
  • What is the slope of a line that goes through (0,6) and (6,0)
    7·1 answer
  • At 4 p.m., the temperature started to change drastically. Each hour, for three hours, the temperature decreased by 7°F. Which ex
    14·2 answers
  • Jill put 53 buttons in a box. Marci put 17 buttons in an other box. Jarrod says Marci has 33 fewer buttons than Jill. He thinks
    9·1 answer
  • Which table correctly converts inches to feet​
    7·2 answers
  • I need help.<br> Math is really hard
    11·1 answer
  • Daria earns $17.50 per customer when she gives haircuts if she gave X haircuts on Monday and Y haircuts on Tuesday which express
    14·1 answer
  • Determine if the sides are greater than (&gt;), less than (&lt;), or equal (=) to each other.
    13·1 answer
  • 9th Grade Geometry<br><br> Describe and correct the error in finding the length of line segment AB
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!