Answer:
x = -5, and y = -6
Step-by-step explanation:
Suppose that we have two equations:
A = B
and
C = D
combining the equations means that we will do:
First we multiply both whole equations by constants:
k*(A = B) ---> k*A = k*B
j*(C = D) ----> j*C = j*D
And then we "add" them:
k*A + j*C = k*B + j*D
Now we have the equations:
-x - y = 11
4*x - 5*y = 10
We want to add them in a given form that one of the variables cancels, so we can solve it for the other variable.
Then we can take the first equation:
-x - y = 11
and multiply both sides by 4.
4*(-x - y = 11)
Then we get:
4*(-x - y) = 4*11
-4*x - 4*y = 44
Now we have the two equations:
-4*x - 4*y = 44
4*x - 5*y = 10
(here we can think that we multiplied the second equation by 1, then we have k = 4, and j = 1)
If we add them, we get:
(-4*x - 4*y) + (4*x - 5*y) = 10 + 44
-4*x - 4*y + 4*x - 5*y = 54
-9*y = 54
So we combined the equations and now ended with an equation that is really easy to solve for y.
y = 54/-9 = -6
Now that we know the value of y, we can simply replace it in one of the two equations to get the value of x.
-x - y = 11
-x - (-6) = 11
-x + 6 = 11
-x = 11 -6 = 5
-x = 5
x = -5
Then:
x = -5, and y = -6
Answer:
sure
Step-by-step explanation:
Answer:
What are the following
Step-by-step explanation:
you didn't attach anything for us to answer
<h2>
Explanation:</h2><h2>
</h2>
The complete question is shown below. As you can see, we know that:

Shapes are congruent if you can turn one into the other by moving, rotating or flipping. If any two triangles have matching side lengths, they're not necessarily congruent. The same happens if they have two matching side lengths, but If triangles have three matching side lengths, then they must be congruent. This is is known as the Side-Side-Side Postulate (SSS). Since in this problem corresponding sides measures the same, therefore we can say that the postulate that applies is:
B. Congruent - SSS