The respective missing proofs are; Alternate interior; Transitive property; Converse alternate interior angles theore
<h3>How to complete two column proof?</h3>
We are given that;
∠T ≅ ∠V and ST || UV
From images seen online, the first missing proof is Alternate Interior angles because they are formed when a transversal intersects two coplanar lines.
The second missing proof is Transitive property because angles are congruent to the same angle.
The last missing proof is Converse alternate interior angles theorem
because two lines are intersected by a transversal forming congruent alternate interior angles, then the lines are parallel.
Read more about Two Column Proof at; brainly.com/question/1788884
#SPJ1
Answer:
Part 1) 
Part 2) 
Part 3) 
Part 4) 
Part 5) 
Part 6) 
Step-by-step explanation:
Part 1) we know that
The shaded region is equal to the area of the complete rectangle minus the area of the interior rectangle
The area of rectangle is equal to

where
b is the base of rectangle
h is the height of rectangle
so



Part 2) we know that
The shaded region is equal to the area of the complete rectangle minus the area of the interior square
The area of square is equal to

where
b is the length side of the square
so



Part 3) we know that
The area of the shaded region is equal to the area of four rectangles plus the area of one square
so



Part 4) we know that
The shaded region is equal to the area of the complete square minus the area of the interior square
so



Part 5) we know that
The area of the shaded region is equal to the area of triangle minus the area of rectangle
The area of triangle is equal to

where
b is the base of triangle
h is the height of triangle
so



Part 6) we know that
The area of the shaded region is equal to the area of the circle minus the area of rectangle
The area of the circle is equal to

where
r is the radius of the circle
so


Answer: 42
Step-by-step explanation: you would do 63 divided by 3 then you would get 21 and do 21×2 and get 42