AB = √(8^2 + 6^2)
AB = √100
AB = 10
AC = √(8^2 + 15^2)
AC = √289
AC = 17
BC = 9
P= AB + AC + BC
P = 10 + 17 + 9
P = 36 units
34)
Area of ABC = 1/2 x 8 x 9
A = 36 square units
• Expand (2a + b)²:
(2a + b)²
= (2a + b) · (2a + b)
Multiply out the brackets by applying the distributive property of multiplication:
= (2a + b) · 2a + (2a + b) · b
= 2a · 2a + b · 2a + 2a · b + b · b
= 2²a² + 2ab + 2ab + b²
Now, group like terms together, and you get
= 2²a² + 4ab + b²
= 4a² + 4ab + b² <——— expanded form (this is the answer).
I hope this helps. =)
Tags: <em>special product square of a sum algebra</em>