Answer: 2
Step-by-step explanation:
Answer:

Step-by-step explanation:
Given

Required
Evaluate 
We have:

Apply law of logarithm

Express 9 as 3^2

Evaluate the exponents

.
So:


Substitute 


Answer:
-13y - (-72y)
59y is answer
Step-by-step explanation:
Answer:
x = 9
Step-by-step explanation:
The product of the external part and the entire part of one secant is equal to the product of the external part and the entire part of the other secant, that is
5(x - 6 + 5) = 4(x - 3 + 4)
5(x - 1) = 4(x + 1) ← distribute parenthesis on both sides
5x - 5 = 4x + 4 ( subtract 4x from both sides )
x - 5 = 4 ( add 5 to both sides )
x = 9
Answer: -1
The negative value indicates a loss
============================================================
Explanation:
Define the three events
A = rolling a 7
B = rolling an 11
C = roll any other total (don't roll 7, don't roll 11)
There are 6 ways to roll a 7. They are
1+6 = 7
2+5 = 7
3+4 = 7
4+3 = 7
5+2 = 7
6+1 = 7
Use this to compute the probability of rolling a 7
P(A) = (number of ways to roll 7)/(number total rolls) = 6/36 = 1/6
Note: the 36 comes from 6*6 = 36 since there are 6 sides per die
There are only 2 ways to roll an 11. Those 2 ways are:
5+6 = 11
6+5 = 11
The probability for event B is P(B) = 2/36 = 1/18
Since there are 6 ways to roll a "7" and 2 ways to roll "11", there are 6+2 = 8 ways to roll either event.
This leaves 36-8 = 28 ways to roll anything else
P(C) = 28/36 = 7/9
-----------------------------
In summary so far,
P(A) = 1/6
P(B) = 1/18
P(C) = 7/9
The winnings for each event, let's call it W(X), represents the prize amounts.
Any losses are negative values
W(A) = amount of winnings if event A happens
W(B) = amount of winnings if event B happens
W(C) = amount of winnings if event C happens
W(A) = 18
W(B) = 54
W(C) = -9
Multiply the probability P(X) values with the corresponding W(X) values
P(A)*W(A) = (1/6)*(18) = 3
P(B)*W(B) = (1/18)*(54) = 3
P(C)*W(C) = (7/9)*(-9) = -7
Add up those results
3+3+(-7) = -1
The expected value for this game is -1.
The player is expected to lose on average 1 dollar per game played.
Note: because the expected value is not 0, this is not a fair game.