1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hatshy [7]
1 year ago
12

Consider the following curve.f(x) = V x2 + 6x – XDetermine the domain of the curve. (Enter your ans(No Response)Find the interce

pts. (Enter your answers as comma-y-intercept (No Response)x-intercept (No Response)
Mathematics
1 answer:
tigry1 [53]1 year ago
4 0

Given the function:

f(x)=\sqrt[]{x^2+6x}-x

the graph of the function will be as follows:

As shown in the figure:

The domain is the values of x which can be f(x) is valid

As the function contain a square root, so, the root must be greater than or equal to zero

so, the domain will be:

(-\infty,-6\rbrack\cup\lbrack0,\infty)

The Y-intercept is the value of y which make x = 0

So, as shown: y-intercept = 0

The x-intercept is the value of x which make y = 0

So, as shown: x-intercept = 0

You might be interested in
A package of 25 wristbands cost $5.25.At this rate,what is the cost of 1 wristband in dollars and cents?
Pani-rosa [81]
$5.25 divided by 25 = .21 cents each
6 0
3 years ago
The midpoint of segment AB is (1, 4). The coordinates of point A are (-2, -3). Find the coordinates of point B.
Norma-Jean [14]
The midpoint (-2,4) is up and to the left from (6,-1).
x goes down in value by -8 from 6 to -2 as we
move from (6,1) to (-2,4)
y goes up by 5
So if we add -8 to -2 and 5 to 4 we will have our new point
(-10,9)
Verify by midpoint formula
(x1+x2)/2 , (y1+y2)/2
=
(-10+6)/2 , ( 9+ -1)/2
-4/2 , 8/2
-2 , 4
3 0
3 years ago
Fill in the blanks. <br><br> sedrftgyuhihkgfndt7y
kvv77 [185]

HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

5 0
3 years ago
Read 2 more answers
AREA, PERMITER AND VOLUME QUESTIONS.
castortr0y [4]

Answer:


Step-by-step explanation:

(A) The radius of the circle is=1.8m

Then  diameter will be: 2r=2{\times}1.8=3.6 m

Circumference of circle= {\pi}d=3.14{\times}3.6=11.304 m

Area of the circle={\pi}r^{2}=3.14{\times}(1.8)^{2}=10.17 m^{2}

(B) The area of the rectangular backboard of basketball court = 18900cm^{2}

Width=180cm

Area of rectangle= l{\times}b[/tex]

18900=l{\times}180[/tex]

l=105 cm=1.05m

Perimeter of the seating space=2(l+b)

=2(32.5+18.4)

=101.8 m

Perimeter of the basketball court=2(l+b)

=2(15+28)

=86 m

Now, total perimeter= perimeter of the basketball court+perimeter of the seating space.

Total perimeter=101.8+86=187.8 m

Area of the seating space=l{\times}b

=32.5{\times}18.4=598 m^{2}

(C) The shape consists of one square and 4 triangles, therefore area of square= (side)^{2}=(3)^{2}=9 m^{2}

Area of 4 triangles=4{\times}(\frac{1}{2}{\times}B{\times}H)

=4{\times}(\frac{1}{2}{\times}3{\times}2)=12m^{2}

Area of the shape= Area of the square+ area of the 4 triangles

=9+12=21m^{2}

(D) Perimeter of rectangle with length=40 m (After converting cm to m) and breadth= 10 m is given by: 2(l+b)=2(40+10)=100 m

Perimeter of rectangle with length 68 m and breadth=33 m is given by:2(l+b)=2(68+33)=202 m

Perimeter of  the semicircle=\frac{{\pi}d}{2}=\frac{3.14{\times}34}{2}=53.38 m

Total perimeter= 100+201+53.38=355.38 m

Area of rectangle with length=40 m (After converting cm to m) and breadth= 10 m is given by:l{\times}b=40{\times}10=400 m^{2}

Area of rectangle with length 68 m and breadth=33 m is given by:l{\times}b=68{\times}33=2244 m^{2}

Area of the semi circle=\frac{{\pi}r^{2}}{2}=\frac{3.14{\times}17^{2}}{2}=453.73 m^{2}

Total  area= 400+2244+453.73=3097.73 m^{2}

8 0
3 years ago
Read 2 more answers
What is greater than 1.45? A. 0.009 B. 0.019 C. 0.0032 D. 0.0177
8_murik_8 [283]

Answer:

none of them are greater than 1.45

8 0
3 years ago
Read 2 more answers
Other questions:
  • Zenobia put 3 large pictures and 4 small pictures on each page of a photo album. What is the total number of large pictures and
    6·1 answer
  • Stephan drives at a speed of 50 miles per hour how long will it take to drive at 175
    11·2 answers
  • at dinner jeremy and his friend spent $24. They left a 20% tip and then split the cost. How much did each person pay?
    12·2 answers
  • A wheelchair ramp is to be built beside the steps to the campus library. Find the angle of elevation of the 20​-foot ​ramp, to t
    5·1 answer
  • The points (0, -6) and (1, -3) fall on a particular line. What is its equation in slope-intercept form?
    15·1 answer
  • g A manufacturer of sprinkler systems designed for fire protection claims that the average activating temperature is at least 13
    5·1 answer
  • What is the equation that passes through (4, 3) and (2, -1)?
    8·2 answers
  • PLEASE HELP QUICK IF I DONT GET HELP I WILL FAIL, IVE GOTTEN NO HELP PLEASE!! I HAVE 10 MINS. The function that represents the a
    11·2 answers
  • Please help me do this
    10·2 answers
  • Sandi bought a sandwich and a milkshake. She spent $12 in all. The equation s + 4.25 = 12 can be used to determine the cost of e
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!