The summation notation for the series 500+490+480+ . . . . . . . +20+10 is
![25500-10\sum\limits^{50}_{n=1} {n}](https://tex.z-dn.net/?f=25500-10%5Csum%5Climits%5E%7B50%7D_%7Bn%3D1%7D%20%7Bn%7D)
A summation notation is used to express a long summation into a single notation.
The given series is:
500+490+480+ . . . . . . . +20+10
This is an arithmetic series with:
a(1) = 500, and
d = 490 - 500 = -10
The last term is a(n) = 10. Find n first by using the nth term formula of an arithmetic sequence:
a(n) = a(1) + (n-1) . d
10 = 500 + (n-1) . (-10)
10 = 500 -10n + 10
10 n = 500
n = 50
Write the explicit formula for the nth term:
a(n) = a(1) + (n-1) . d
a(n) = 500 + (n-1) . (-10)
a(n) = 500 -10n + 10
a(n) = 510 - 10n
The series is the summation notation from n=1 to n = 50
![=\sum\limits^{50}_{n=1} {a(n)}](https://tex.z-dn.net/?f=%3D%5Csum%5Climits%5E%7B50%7D_%7Bn%3D1%7D%20%7Ba%28n%29%7D)
![=\sum\limits^{50}_{n=1} {(510-10n)}](https://tex.z-dn.net/?f=%3D%5Csum%5Climits%5E%7B50%7D_%7Bn%3D1%7D%20%7B%28510-10n%29%7D)
![=\sum\limits^{50}_{n=1} {510} -\sum\limits^{50}_{n=1} {10n}](https://tex.z-dn.net/?f=%3D%5Csum%5Climits%5E%7B50%7D_%7Bn%3D1%7D%20%7B510%7D%20-%5Csum%5Climits%5E%7B50%7D_%7Bn%3D1%7D%20%7B10n%7D)
![=510\times50-10\sum\limits^{50}_{n=1} {n}](https://tex.z-dn.net/?f=%3D510%5Ctimes50-10%5Csum%5Climits%5E%7B50%7D_%7Bn%3D1%7D%20%7Bn%7D)
![=25500-10\sum\limits^{50}_{n=1} {n}](https://tex.z-dn.net/?f=%3D25500-10%5Csum%5Climits%5E%7B50%7D_%7Bn%3D1%7D%20%7Bn%7D)
Learn more about summation notation of a series here:
brainly.com/question/23742399
#SPJ4