Answer: The given logical equivalence is proved below.
Step-by-step explanation: We are given to use truth tables to show the following logical equivalence :
P ⇔ Q ≡ (∼P ∨ Q)∧(∼Q ∨ P)
We know that
two compound propositions are said to be logically equivalent if they have same corresponding truth values in the truth table.
The truth table is as follows :
P Q ∼P ∼Q P⇔ Q ∼P ∨ Q ∼Q ∨ P (∼P ∨ Q)∧(∼Q ∨ P)
T T F F T T T T
T F F T F F T F
F T T F F T F F
F F T T T T T T
Since the corresponding truth vales for P ⇔ Q and (∼P ∨ Q)∧(∼Q ∨ P) are same, so the given propositions are logically equivalent.
Thus, P ⇔ Q ≡ (∼P ∨ Q)∧(∼Q ∨ P).
Answer:
. . . . . . . . . hnghcgghjjjjj
You can arrange your reindeer 30 different ways.
Answer:
B=25
Step-by-step explanation:
b=2(10)^2(10-5)/10(10
b=2(100)(5)/100
b=(200)(5)/100
B=2500/100
B=25