Answer:  The answer is:  " <u> </u><u>45 </u>  % "  .    
________________________________________________
                →    " Twenty-seven is <u> 45 </u> % of 60. " 
________________________________________________
Step-by-step explanation:
________________________________________________
The question asks:
  " 27 is what % {percentage] of 60 " ?  ; 
________________________
So:  " 27 =  (n/100) * 60 " ;  Solve for "n" ; 
________________________________________________
Method 1:
________________________________________________
   →   (n/100) * 60 = 27 ; 
Divide each side by 60 :
  →   [ (n/100)  * 60 ] / 60 = 27 /60 ; 
to get: 
  →    (n/100) = 27/60 ; 
Now:  Cross-factor multiply:
  →  60n = (27)*(100) ; 
to get:
  → 60n = 2700 ; 
Divide each side by "60" ; 
 →  60n = 2700/ 60 ; 
to get:  n = 45 ; 
________________________
  →  The answer is:  45 % .    
    →  " Twenty-seven is <u>45 %</u> of 60." 
________________________________________________
Method 2:
________________________________________________
The question asks:
  " 27 is what % {percentage] of 60 " ? 
________________________
To solve this problem: 
Rephrase this question as: 
________________________
 " 27 is 60% of what number ? "
  →  The answer will be the same!
________________________
→  27 = (60/100)* n ;   Solve for "n" ; 
Multiply each side of the equation by "100" ; to eliminate the fraction:
→  100 * 27 = 100 * [ (60/100)* n ] ; 
  to get:
    →   2700 = 60n ; 
↔  60n = 2700 ; 
Divide Each Side of the equation by "60" ; 
     →   60n/60 = 2700 / 60 ; 
to get:  n = 45 ; 
________________________________________________
 →  The answer is:  45 % .    
        →  " Twenty-seven is <u>45 %</u> of 60." 
________________________________________________
Method 2:  Variant 1 of 2: 
________________________________________________
When we have:
→  27 = (60/100)* n ;   Solve for "n" ; 
________________________
Note that:  "(60/100) =  (60÷ 100) = (6 ÷ 10)" ;   since:  in "(60/100)" ;  the "zero" from the "<u>numerator</u>" cancels out;  <u>And</u>:  the "last zero" in "100" — from the "<u>denominator</u>" cancels out;  since we are dividing "each side" of the fraction by "10" ;
   →   "(60÷10) / (600÷10)"  =  " 6/10 " ;  
   →   " (6/10)" ; that is;  "six-tenths"} ;  
   →     can be represented by:  " 0.6 " ; 
   →  {by convention;  but specifically, here is the explanation} — as follows:
________________________
   →   "(6/10)" =  " (6 ÷ 10) " ;  
<u>Note</u>:  When dividing a number by "10" ;  we take the original number; and move the decimal point to the left; & then we rewrite that number as the "answer".   
<u>Note</u>:  When multiplying or dividing by a positive, non-zero integer factor of "10" that has at least 1 (one) "zero" after that particular factor of "10".  We can get the answer by taking the original number & moving the decimal point the number of spaces as designated by the number of zeros following the particular [aforementioned factor of "10".].
We move the decimal point to the right if we are multiplying;  and to the left  if we are dividing.  In this case, <u>we are dividing</u> "6" by "10 " :
  →  " 6   ÷  10  =  ? " ;  
  →  " 6.  ÷  10 =  ? " ; 
    We take the: " 6. " ;  and move the decimal point "<u>one space backward [i.e. "to the left</u>"];  since we are <u>dividing by "</u><u>10</u><u>"</u> ; 
  →  to get:  " .6 " ;  & we rewrite this value as "0.6" in a rewritten equation:
________________________
So; we take our equation:
→  27 = (60/100)*n ;  And rewrite—substituting "0.6" for
 "(60/100)"— as follows:
________________________
→  27 = (0.6)n ;  ↔ (0.6) n = 27 ; 
Multiply each side of the equation by "10" ; to eliminate the decimal:
    →  10 * [ (0.6)n ]  = 27 * 10 ; 
to get:
   →  6n = 270 ; 
Divide each side of the equation by "6" ; to isolate "n" on one side of the equation; & to solve for "n" ; 
  →  6n / 6  =  270 / 6 ; 
 to get:   n = 45 ; 
________________________________________________
→  The answer is:  45 % .    
       →  " Twenty-seven is <u>45 %</u> of 60." 
________________________________________________
Method 2 (variant 2 of 2):
________________________________________________
We have the equation:  27 = (60/100)* n ;   Solve for "n" ; 
________________________
<u>Note</u>:  From Method 2 (variant) 1 of 2— see above):
________________________
<u>Note</u>:  Refer to the point at which we have: 
________________________
 →   " {  (60÷10) / (600÷10)"  =  " (6/10) " ;  that is;  "six-tenths"} ; 
________________________
Note that the fraction— "(6/10)" ;  can be further simplified:
 →  "(6/10)" =  "(6÷2) / (10÷2)" = "(3/5)" ; 
Now, we can rewrite the equation; 
 → We replace "(60/100)" ;  with:  "(3/5)" :
     →  27 = (3/5)* n ;   Solve for "n" ; 
↔ (3/5)* n = 27 ;  
↔    (3n/5) = 27 ; 
 Multiply Each Side of the equation by "5" ; 
 →  5* (3n/5) = 27 * 5 ;  
to get: 
 →   3n = 135 ; 
Divide Each side of the equation by "3" ;  to isolate "n" on one side of the equation;  & to solve for "n" ; 
 →  3n / 3 = 135 / 3  ; 
to get:   n = 45 ; 
________________________________________________
  →  The answer is:  45 % .    
        →  " Twenty-seven is <u>45 %</u> of 60." 
________________________________________________
Hope this answer is helpful!
         Wishing you the best in your academic endeavors
            — and within the "Brainly" community!
________________________________________________