The answer is true because it is the same
Answer: See Explanation
Step-by-step explanation:
The price elasticity of demand will be calculated as:
q = 860 − 20p.
dq/do = -20
p = 38
Elasticity E(p) = (p/q) × dq/dp
= [38 /(860 - 20p)] × (20)
=38 × 20/(860 - 760)
= 7.6
Therefore, the price elasticity of demand when the price is $38 per orange is 7.6
Revenue = price × quantity
= p × q
= p × (860 − 20p)
= 860p - 20p²
Differentiating with respect to p
= 860 - 40p
40p = 860
p = 860/40
p = 21.50
Maximum Revenue = 860p - 20p²
= 860(21.50) - 20(21.50)²
= 18490 - 9245
= 9245
Answer:
it is >
Step-by-step explanation:
Number in the tenths place: 2
Number in the hundredths place: 8
Since 8>5, the number rounds up.
Final answer: 14.3
Answer:
Step-by-step explanation:
(cos A+ cos B)-cos C
![=2cos \frac{A+B}{2}cos \frac{A-B}{2}-cos C~~~...(1)\\A+B+C=180\\A+B=180-C\\\frac{A+B}{2}=90-\frac{C}{2}\\cos \frac{A+B}{2}=cos(90-\frac{C}{2})=sin \frac{C}{2}\\cos C=1-2sin^2\frac{C}{2}\\(1)=2 sin \frac{C}{2} cos \frac{A-B}{2}-1+2sin^2\frac{C}2}\\=2sin\frac{C}{2}[cos \frac{A-B}{2}+sin \frac{C}{2}]-1~~~...(2)\\\\now~again~A+B+C=180\\C=180-(A+B)\\sin\frac{C}{2}=sin(90-\frac{A+B}{2})=cos \frac{A+B}{2}\\(2)=2sin\frac {C}{2}[cos \frac{A-B}{2}+cos \frac{A+B}{2}]-1\\](https://tex.z-dn.net/?f=%3D2cos%20%5Cfrac%7BA%2BB%7D%7B2%7Dcos%20%5Cfrac%7BA-B%7D%7B2%7D-cos%20C~~~...%281%29%5C%5CA%2BB%2BC%3D180%5C%5CA%2BB%3D180-C%5C%5C%5Cfrac%7BA%2BB%7D%7B2%7D%3D90-%5Cfrac%7BC%7D%7B2%7D%5C%5Ccos%20%5Cfrac%7BA%2BB%7D%7B2%7D%3Dcos%2890-%5Cfrac%7BC%7D%7B2%7D%29%3Dsin%20%5Cfrac%7BC%7D%7B2%7D%5C%5Ccos%20C%3D1-2sin%5E2%5Cfrac%7BC%7D%7B2%7D%5C%5C%281%29%3D2%20sin%20%5Cfrac%7BC%7D%7B2%7D%20cos%20%5Cfrac%7BA-B%7D%7B2%7D-1%2B2sin%5E2%5Cfrac%7BC%7D2%7D%5C%5C%3D2sin%5Cfrac%7BC%7D%7B2%7D%5Bcos%20%5Cfrac%7BA-B%7D%7B2%7D%2Bsin%20%5Cfrac%7BC%7D%7B2%7D%5D-1~~~...%282%29%5C%5C%5C%5Cnow~again~A%2BB%2BC%3D180%5C%5CC%3D180-%28A%2BB%29%5C%5Csin%5Cfrac%7BC%7D%7B2%7D%3Dsin%2890-%5Cfrac%7BA%2BB%7D%7B2%7D%29%3Dcos%20%5Cfrac%7BA%2BB%7D%7B2%7D%5C%5C%282%29%3D2sin%5Cfrac%20%7BC%7D%7B2%7D%5Bcos%20%5Cfrac%7BA-B%7D%7B2%7D%2Bcos%20%5Cfrac%7BA%2BB%7D%7B2%7D%5D-1%5C%5C)
