1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
7nadin3 [17]
2 years ago
8

Solve the following inequality algebraically. |x - 1| =>15

Mathematics
1 answer:
Maurinko [17]2 years ago
7 0

We have the following:

|x-1|\ge15

solving for x:

\begin{gathered} x-1\ge15\rightarrow x\ge16 \\ x-1\leq-15\rightarrow x\leq-14 \end{gathered}

The answer is:

(-\infty,-14\rbrack\cup\lbrack16,\infty)

You might be interested in
Write the base number for the expression.
jeka94

Answer:

6

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Can 7:13 be simplified
gtnhenbr [62]

Answer:

no i don't think so

Step-by-step explanation:

7 0
4 years ago
Read 2 more answers
2: Write out a system of equations that has infinite solutions. Explain why it has infinite
Rasek [7]

Answer:

Below!

Explanation:

A system of equations with infinite solutions defines that both the equations are identical and are overlapping when the lines are graphed. An example could be y = 5x + 9 and y = 5x + 9. These sets of equations have infinite solutions because they are the same and when graphed, they overlap.

Hoped this helped!

4 0
2 years ago
Divide 16x3 – 12x2 + 20x – 3 by 4x + 5.
nalin [4]

Answer:

4x^2 - 8x + 15 - \frac{78}{4x+5}

Step-by-step explanation:

<em>To solve polynomial long division problems like these, it's helpful to build a long division table. Getting used to building these can make problems like this much simpler to solve.</em>

Begin by looking at the first term of the cubic polynomial.

What would we have to multiply 4x + 5 by to get an expression containing 16x^3? The answer is 4x^2, since (4x + 5) \times 4x^2 = 16x^2 + 20x.

This is the first step of our long division, and we write out the start of our long division table like this:

{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,4x^2\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,16x^3 + 20x^2\\

On the left is the divisor. On top is 4x^2. In the middle is the polynomial we are dividing, and on the bottom is the result of multiplying our divisor by

The next step is to subtract the bottom expression from the middle one, like so:

{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,4x^2\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\underline{16x^3 + 20x^2}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,0x^3 - 32x^2\\

We are left with -32x^2. The next thing to do is to add the next term of the polynomial we are dividing to the bottom line, like this:

{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,4x^2\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\underline{16x^3 + 20x^2}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 32x^2 + 20x\\

Now we return to the beginning of the instructions, and repeat the process: namely, what would we have to multiply 4x + 5 by to get an expression containing -32x^2? The answer is -8x, and we fill out our long division table like so:

{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,4x^2 - \,\,\,\,8x\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\underline{16x^3 + 20x^2}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 32x^2 + 20x\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 32x^2 - 40x\\

Once again, we subtract the bottom expression from the one above it, and include the next term of the divisor, like so:

{ }\qquad{ }\qquad{ }\quad{ }4x^2 - \,\,\,\,8x \,+ 15\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\underline{16x^3 + 20x^2}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 32x^2 + 20x\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline{- 32x^2 - 40x}\\{ }\qquad{ }\qquad{ }\qquad{ }\qquad{ }\qquad{ }\,\,\,\,\,60x - 3\\

And repeat. What do we multiply 4x + 5 by to get an expression containing 60x? The answer is 15. Our completed long division table looks like this:{ }\qquad{ }\qquad{ }\quad{ }4x^2 - \,\,\,\,8x \,+15\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\underline{16x^3 + 20x^2}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 32x^2 + 20x\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline{- 32x^2 - 40x}\\{ }\qquad{ }\qquad{ }\qquad{ }\qquad{ }\qquad{ }\,\,\,\,\,60x - 3\\{ }\qquad{ }\hspace{3cm}\,\,\underline{60x + 75}\\{ }\hspace{4.3cm}\,\,-78

Now, the expression at the top,

4x^2 - 8x + 20x + 15

is our quotient, and the last number, -78, is our remainder.

Hence we arrive at the solution of

\frac{16x^3-12x^2+20x-3}{4x+5} =4x^2 - 8x + 15 - \frac{78}{4x+5}.

6 0
3 years ago
27 = n + 7 <br><br> What is the answer to the equation
steposvetlana [31]
N = 20 then when you add 7 it becomes 27 :) have a good day
5 0
3 years ago
Other questions:
  • The function g(x) = x2 – 10x + 24 is graphed on a coordinate plane. Where will the function cross the x-axis?
    8·2 answers
  • 8. In how many ways can a committee of four be selected from eight men and seven women if Miss Jones refuses to serve on the sam
    11·1 answer
  • Difference between 29.035 and -36,196
    7·2 answers
  • Use the equation to answer the question.
    8·1 answer
  • Please help me with this question
    14·2 answers
  • Find the 60th term of the arithmetic sequence -27, -24, -21
    9·1 answer
  • Carry out the following division.​
    12·2 answers
  • A test is worth 140 points. Ten percent of those points are from one short-answer question. How many points is the short-answer
    15·1 answer
  • Which linear inequality is represented by the graph?<br> Oys=x+2<br> Oy² 2x+2<br> Oy≤ x+2<br> Oy²x+2
    9·1 answer
  • How many triangles are there?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!