We can notice the triangle on the square, hypotenuse is 8m and the base is half of the lengt of the square we will name it x
then
we can use pythagoras to solve

where a and b aer sides of the triangle and h the hypotenuse
replacing
![\begin{gathered} x^2+x^2=8^2 \\ 2x^2=64 \\ x^2=\frac{64}{2} \\ \\ x=\sqrt[]{32}=4\sqrt[]{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%5E2%2Bx%5E2%3D8%5E2%20%5C%5C%202x%5E2%3D64%20%5C%5C%20x%5E2%3D%5Cfrac%7B64%7D%7B2%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Csqrt%5B%5D%7B32%7D%3D4%5Csqrt%5B%5D%7B2%7D%20%5Cend%7Bgathered%7D)
the length of x is half of the side of the square then the side of the square is
![4\sqrt[]{2}\times2=8\sqrt[]{2}](https://tex.z-dn.net/?f=4%5Csqrt%5B%5D%7B2%7D%5Ctimes2%3D8%5Csqrt%5B%5D%7B2%7D)
each side of the square is 8v2 meters
Area
we use formula of the area
![\begin{gathered} A=l\times l \\ A=8\sqrt[]{2}\times8\sqrt[]{2} \\ \\ A=128 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20A%3Dl%5Ctimes%20l%20%5C%5C%20A%3D8%5Csqrt%5B%5D%7B2%7D%5Ctimes8%5Csqrt%5B%5D%7B2%7D%20%5C%5C%20%20%5C%5C%20A%3D128%20%5Cend%7Bgathered%7D)
<em>area of the square is 128 square meters</em>
Perimeter
we use formula of the perimeter
![\begin{gathered} P=4l \\ P=4\times8\sqrt[]{2} \\ P=32\sqrt[]{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20P%3D4l%20%5C%5C%20P%3D4%5Ctimes8%5Csqrt%5B%5D%7B2%7D%20%5C%5C%20P%3D32%5Csqrt%5B%5D%7B2%7D%20%5Cend%7Bgathered%7D)
perimeter of the square is 32v2 meters