Answer:
- <u><em>to one's liking; pleasing: agreeable manners;an agreeable sensation. willing or ready to agree or consent: Are you agreeable to my plans for Saturday</em></u>
- <u><em> i would go for A ore B</em></u>
Step-by-step explanation:
Answer:
it's 3/5
Step-by-step explanation:

Answer:
$195 in total
Step-by-step explanation:
You would find the perimeter of the total garden first which equals 54 then times it by 1.5 and get 81 dollars for the gate. Then find the area of the triangle and get 120 then do 2 times 16 and get 32 then you add them together and get 152. Now with the 152 you divide it by 8 then multiple by 6 and finally add your 81 with 114 and get 195 dollars in total.
These are two questions and two answers.
1) Problem 17.
(i) Determine whether T is continuous at 6061.
For that you have to compute the value of T at 6061 and the lateral limits of T when x approaches 6061.
a) T(x) = 0.10x if 0 < x ≤ 6061
T (6061) = 0.10(6061) = 606.1
b) limit of Tx when x → 6061.
By the left the limit is the same value of T(x) calculated above.
By the right the limit is calculated using the definition of the function for the next stage: T(x) = 606.10 + 0.18 (x - 6061)
⇒ Limit of T(x) when x → 6061 from the right = 606.10 + 0.18 (6061 - 6061) = 606.10
Since both limits and the value of the function are the same, T is continuous at 6061.
(ii) Determine whether T is continuous at 32,473.
Same procedure.
a) Value at 32,473
T(32,473) = 606.10 + 0.18 (32,473 - 6061) = 5,360.26
b) Limit of T(x) when x → 32,473 from the right
Limit = 5360.26 + 0.26(x - 32,473) = 5360.26
Again, since the two limits and the value of the function have the same value the function is continuos at the x = 32,473.
(iii) If T had discontinuities, a tax payer that earns an amount very close to the discontinuity can easily approach its incomes to take andvantage of the part that results in lower tax.
2) Problem 18.
a) Statement Sk
You just need to replace n for k:
Sk = 1 + 4 + 7 + ... (3k - 2) = k(3k - 1) / 2
b) Statement S (k+1)
Replace
S(k+1) = 1 + 4 + 7 + ... (3k - 2) + [ 3 (k + 1) - 2 ] = (k+1) [ 3(k+1) - 1] / 2
Simplification:
1 + 4 + 7 + ... + 3k - 2+ 3k + 3 - 2] = (k + 1) (3k + 3 - 1)/2
k(3k - 1)/ 2 + (3k + 1) = (k + 1)(3k+2) / 2
Do the operations on the left side and you will find it can be simplified to k ( 3k +1) (3 k + 2) / 2.
With that you find that the left side equals the right side which is a proof of the validity of the statement by induction.