The perimeter of the triangle would be B)18. the triangle's sides are equal and you can tell by the single lines on each side symbolizing that all the sides are equal. To find perimeter, you have to add all sides together, and in this case it is 6. When 6 is added three times, it equals 18, which is the answer.
Answer:
d³y/dx³ = (-2xy² − 3x³ − 4xy²) / (8y⁵)
Step-by-step explanation:
d²y/dx² = (-2y² − x²) / (4y³)
Take the derivative (use quotient rule and chain rule):
d³y/dx³ = [ (4y³) (-4y dy/dx − 2x) − (-2y² − x²) (12y² dy/dx) ] / (4y³)²
d³y/dx³ = [ (-16y⁴ dy/dx − 8xy³ − (-24y⁴ dy/dx − 12x²y² dy/dx) ] / (16y⁶)
d³y/dx³ = (-16y⁴ dy/dx − 8xy³ + 24y⁴ dy/dx + 12x²y² dy/dx) / (16y⁶)
d³y/dx³ = ((8y⁴ + 12x²y²) dy/dx − 8xy³) / (16y⁶)
d³y/dx³ = ((2y² + 3x²) dy/dx − 2xy) / (4y⁴)
Substitute:
d³y/dx³ = ((2y² + 3x²) (-x / (2y)) − 2xy) / (4y⁴)
d³y/dx³ = ((2y² + 3x²) (-x) − 4xy²) / (8y⁵)
d³y/dx³ = (-2xy² − 3x³ − 4xy²) / (8y⁵)
The measure of a straight line is 180
125+30=155
180-155=25
x = 25
Answer:
Step-by-step explanation:
Comment
The shape consists of a rectangle on the bottom and a trapezoid on the top.
Rectangle
A rectangle has a very simple Area formula. It is Area = L*W. In this case the L = 14 m and is horizontal. The width is at right angles to the length and is marked as 3.
Area = L * w
L = 14
w = 3
Area = 14 * 3 = 42 m^2
Trapezoid
The trapezoid is a bit more complicated and some things have to be found. First of all b1 is the first base of the trapezoid. It is parallel to and equal to the Length of the rectangle. b2 is marked 10 meters. The height is just a bit more complicated. The total height of the figure is 8 m. You can't count the 3 m of the rectangle as part of the height because b1 comes only to the top of the rectangle. The height is 8 - 3 = 5
Area = 1/2(b1 + b2)*h/2
b1 = 14
b2 = 10
h = 8 - 3 = 5
Area = 1/2 ( 14 + 10) * 5 / 2
Area = 1/2 (24)*5
Area = 12 * 5
Area = <u> 60 m^2</u>
Total Area 102 m^2