Answer:
3.38
Step-by-step explanation:
x + y + z = 16.9
x = 2y
y = z
y=y
2y (x) + y(y) + y(z) = 16.0
5y = 16.9
y = 3.38
Complete question :
Suppose that of the 300 seniors who graduated from Schwarzchild High School last spring, some have jobs, some are attending college, and some are doing both. The following Venn diagram shows the number of graduates in each category. What is the probability that a randomly selected graduate has a job if he or she is attending college? Give your answer as a decimal precise to two decimal places.
What is the probability that a randomly selected graduate attends college if he or she has a job? Give your answer as a decimal precise to two decimal places.
Answer:
0.56 ; 0.60
Step-by-step explanation:
From The attached Venn diagram :
C = attend college ; J = has a job
P(C) = (35+45)/300 = 80/300 = 8/30
P(J) = (30+45)/300 = 75/300 = 0.25
P(C n J) = 45 /300 = 0.15
1.)
P(J | C) = P(C n J) / P(C)
P(J | C) = 0.15 / (8/30)
P(J | C) = 0.5625 = 0.56
2.)
P(C | J) = P(C n J) / P(J)
P(C | J) = 0.15 / (0.25)
P(C | J) = 0.6 = 0.60
Just divide and then get the quotient and round :) use the calculator it helps but that’s the explanation
<u>Candies</u>
4 red
2 yellow
5 green
1 purple
- Taina doesn't like red candies.
4/4+2+5+1 = 4/12
4/12 is the probability Taina <em>will</em> get a red candy, but we're looking for the opposite.
12/12 - 4/12 = 8/12 = 2/3
The probability Taina will not select a red candy is 2/3.
Simplifying
5x(4y + 3x) = 5x(3x + 4y)
Reorder the terms:
5x(3x + 4y) = 5x(3x + 4y)
(3x * 5x + 4y * 5x) = 5x(3x + 4y)
Reorder the terms:
(20xy + 15x2) = 5x(3x + 4y)
(20xy + 15x2) = 5x(3x + 4y)
20xy + 15x2 = (3x * 5x + 4y * 5x)
Reorder the terms:
20xy + 15x2 = (20xy + 15x2)
20xy + 15x2 = (20xy + 15x2)
Add '-20xy' to each side of the equation.
20xy + -20xy + 15x2 = 20xy + -20xy + 15x2
Combine like terms: 20xy + -20xy = 0
0 + 15x2 = 20xy + -20xy + 15x2
15x2 = 20xy + -20xy + 15x2
Combine like terms: 20xy + -20xy = 0
15x2 = 0 + 15x2
15x2 = 15x2
Add '-15x2' to each side of the equation.
15x2 + -15x2 = 15x2 + -15x2
Combine like terms: 15x2 + -15x2 = 0
0 = 15x2 + -15x2
Combine like terms: 15x2 + -15x2 = 0
0 = 0
Solving
0 = 0
Couldn't find a variable to solve for.
This equation is an identity, all real numbers are solutions.