Answer:
The Linnaean system is based on similarities in obvious physical traits. It consists of a hierarchy of taxa, from the kingdom to the species. Each species is given a unique two-word Latin name. The recently added domain is a larger and more inclusive taxon than the kingdom.
Explanation:
brainleist please
Answer No 1:
Process 1 is cellular respiration. Cellular respiration can be described as a process in which glucose and oxygen are converted into water and carbon dioxide. ATP is released by this process which is used as an energy source.
Process 2 is anaerobic respiration. It is a process which occurs in the absence of oxygen. This process will also yield ATP.
Answer No 2:
The process 1, cellular respiration, is known to produce 38 molecules of ATP. Out of these, 2 molecules are the result from the process of glycolysis, 2 molecules arise from Kreb's cycle, rest 34 are known to occur from the electron transport chain.
The process of anaerobic respiration is known to make 2 molecules of ATP in total.
We examined the biogeographic patterns implied by early hominid phylogenies and compared them to the known dispersal patterns of Plio-Pleistocene African mammals. All recent published phylogenies require between four and seven hominid dispersal events between southern Africa, eastern Africa, and the Malawi Rift, a greater number of dispersals than has previously been supposed. Most hominid species dispersed at the same time and in the same direction as other African mammals. However, depending on the ages of critical hominid specimens, many phylogenies identify at least one hominid species that dispersed in the direction opposite that of contemporaneous mammals. This suggests that those hominids may have possessed adaptations that allowed them to depart from continental patterns of mammalian dispersal.
plz mark me as brainliest if this helped :)
i think it is 3a because when they are all together they are in like a clump so
Continuous cell lines differ from primary cell lines in that <span>continuous cell lines are derived from primary cell lines.</span>