The system of equations is y = 4x - 3 and y = -1/3x + 4 and the solution is (21/13, 45/13)
<h3>How to determine the
system of equations?</h3>
From the question, we have the table of values as the parameters that can be used in our computation:
From the table, we have
<u>Table 1</u>
(x, y) = (0, -3) and (4, 13)
A linear equation is represented as
y = mx + c
Where
Slope = m
c = y when x = 0
This means that
c = -3
So, we have
y = mx - 3
The point (4, 13) implies that
13 = m * 4 - 3
So, we have
4m = 16
m = 4
So, the equation is
y = 4x - 3
<u>Table 2</u>
(x, y) = (0, 4) and (4, 6)
A linear equation is represented as
y = mx + c
This means that
c = 4
So, we have
y = mx + 4
The point (4, 6) implies that
6 = m * 4 + 4
So, we have
4m = -2
m = -1/3
So, the equation is
y = -1/3x + 4
Substitute y = -1/3x + 4 in y = 4x - 3
-1/3x + 4 = 4x - 3
So, we have
-x + 12 = 12x - 9
Evaluate the like terms
13x = 21
Divide
x = 21/13
y = -1/3x + 4 implies that
y = -1/3 x 21/13 + 4
So, we have
y = -7/13 + 4
Evaluate
y = 45/13
So, the solution is (21/13, 45/13)
Read more about system of equations at
brainly.com/question/13729904
#SPJ1