1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRINA_888 [86]
3 years ago
11

After the expression is simplified as much as possible, x is raised to what exponent?

Mathematics
1 answer:
IrinaVladis [17]3 years ago
7 0
The answer to the question

You might be interested in
A red light flashes every 14 minutes. A blue light flashes every 24 minutes. when will the two lights flash together again if th
natta225 [31]
14×12=168

24×7=168

168÷60=2 hours and 48 minutes

2 hours and 48 minutes+ 8:00AM=10:48AM

Answer: 10:48AM 

4 0
3 years ago
If 5x = 30 then x is equal to
max2010maxim [7]

Answer:

6

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Find the student’s error in solving the following inequality.
Volgvan
31 < -5x + 6
<u>-6             -6</u>
<u>25</u> < <u>-5x</u>
-5      -5
-5 < x
x > -5


5 0
3 years ago
Read 2 more answers
The theater sells two types of tickets: adult tickets for $15 and
UkoKoshka [18]

Answer:

68

Step-by-step explanation:

Let x=adult tickets and y=child tickets

1) 15x+11y=1889

2) x+y=147

multiply equation 1 by -1/11 on both sides to get:

-(15/11)x-y=-171.73

add new equation with equation 2 to get

-4/11x=-24.73

Isolate x to get:

x=67.99999

Round up to get 68 adult tickets

6 0
3 years ago
Other questions:
  • The first steps in writing f(x) = 4x2 + 48x + 10 in vertex form are shown.
    10·2 answers
  • The moon is about 240,000 miles from earth what is the distance written as a whole number multiplied by the power of 10
    15·2 answers
  • When referring to the normal probability distribution, there is not just one; there is a "family" of normal probability distribu
    6·1 answer
  • Which of the following best represents the average speed of a fast runner?
    7·1 answer
  • How many solutions does the following equation have? |4x + 12| = 0 No solution One solution Two solutions Infinitely many soluti
    9·1 answer
  • Given the line of best fit for a data set of data points with the equation y=5x-2.5,what is the residual for the point (4,13)
    15·1 answer
  • The basic ratio of blue to red for paint is 4:7. How many quarts of blue paint should be mixed with 21 quarts of red paint to ge
    5·1 answer
  • Danielle sells 3 donuts for $9. Write an equation to represent the relationship between the number of donuts sold and the earnin
    8·1 answer
  • Nicholas wrote the steps below to simplify the fraction 20/30. Find his error and correct it. 20/30= 20÷5=4 30÷6=5
    14·2 answers
  • Question
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!