Answer:
The value of the Rational expression when
is: 
Step-by-step explanation:
For this exercise is important to remember:
- When a negative number is raised to an even power, the result will be positive.
- The multiplication of signs:

Then, given the following Rational expression:

You need to follow these steps in order to find its value when
:
1. Substitute the given value of "x" (
) into the expression:

2. Evaluate and simplify:

Answer:
6. Find the product for both sets of polynomials below by multiplying vertically. (4 points: 2 points for each product)
A)
4x^4 - 4x^3 - 16x^2 + 16x
B)
4x^4 - 4x^3 - 16x^2 + 16x
7. Are the two products the same when you multiply them vertically? (1 point)
Yes, the two products are the same when you multiply them.
Making a Decision:
8. Who was right, Emily or Zach? Are the products the same with the three different methods of multiplication? (1 point)
Emily was right, the products are the same with all three different methods of multiplication.
9. Which of these three methods is your preferred method for multiplying polynomials? Why? (1 point)
I prefer the table method because it is easier to understand what is going on, know where and what to do, and it is nicely and neatly laid out in front of me.
A goes between -1 and -1/2
I think it is D cause it could be equal
2
3
−
1
1
=
3
+
3
2
3
x
−
11
=
x
3
+
3
32x−11=3x+3
2
3
−
1
1
=
3
+
3
2
x
3
−
11
=
x
3
+
3
32x−11=3x+3
2
Find common denominator
2
3
−
1
1
=
3
+
3
2
x
3
−
11
=
x
3
+
3
32x−11=3x+3
2
3
+
3
(
−
1
1
)
3
=
3
+
3
2
x
3
+
3
(
−
11
)
3
=
x
3
+
3
32x+33(−11)=3x+3
3
Combine fractions with common denominator
2
3
+
3
(
−
1
1
)
3
=
3
+
3
2
x
3
+
3
(
−
11
)
3
=
x
3
+
3
32x+33(−11)=3x+3
2
+
3
(
−
1
1
)
3
=
3
+
3
2
x
+
3
(
−
11
)
3
=
x
3
+
3
32x+3(−11)=3x+3
4
Multiply the numbers
2
+
3
(
−
1
1
)
3
=
3
+
3
2
x
+
3
(
−
11
)
3
=
x
3
+
3
32x+3(−11)=3x+3
2
−
3
3
3
=
3
+
3
2
x
−
33
3
=
x
3
+
3
32x−33=3x+3
5
Find common denominator
2
−
3
3
3
=
3
+
3
2
x
−
33
3
=
x
3
+
3
32x−33=3x+3
2
−
3
3
3
=
3
+
3
⋅
3
3
2
x
−
33
3
=
x
3
+
3
⋅
3
3
32x−33=3x+33⋅3
6
Combine fractions with common denominator
2
−
3
3
3
=
3
+
3
⋅
3
3
2
x
−
33
3
=
x
3
+
3
⋅
3
3
32x−33=3x+33⋅3
2
−
3
3
3
=
+
3
⋅
3
3
2
x
−
33
3
=
x
+
3
⋅
3
3
32x−33=3x+3⋅3
7
Multiply the numbers
2
−
3
3
3
=
+
3
⋅
3
3
2
x
−
33
3
=
x
+
3
⋅
3
3
32x−33=3x+3⋅3
2
−
3
3
3
=
+
9
3
2
x
−
33
3
=
x
+
9
3
32x−33=3x+9
8
Multiply all terms by the same value to eliminate fraction denominators
2
−
3
3
3
=
+
9
3
2
x
−
33
3
=
x
+
9
3
32x−33=3x+9
3
⋅
2
−
3
3
3
=
3
(
+
9
3
)
3
⋅
2
x
−
33
3
=
3
(
x
+
9
3
)
3⋅32x−33=3(3x+9)
9
Cancel multiplied terms that are in the denominator
3
⋅
2
−
3
3
3
=
3
(
+
9
3
)
3
⋅
2
x
−
33
3
=
3
(
x
+
9
3
)
3⋅32x−33=3(3x+9)
2
−
3
3
=
+
9
2
x
−
33
=
x
+
9
2x−33=x+9
10
Add
3
3
33
33
to both sides of the equation
2
−
3
3
=
+
9
2
x
−
33
=
x
+
9
2x−33=x+9
2
−
3
3
+
3
3
=
+
9
+
3
3
2
x
−
33
+
33
=
x
+
9
+
33
2x−33+33=x+9+33
11
Simplify
Add the numbers
Add the numbers
2
=
+
4
2
2
x
=
x
+
42
2x=x+42
12
Subtract
x
x
from both sides of the equation
2
=
+
4
2
2
x
=
x
+
42
2x=x+42
2
−
=
+
4
2
−
2
x
−
x
=
x
+
42
−
x
2x−x=x+42−x
13
Simplify
Combine like terms
Multiply by 1
Combine like terms
=
4
2
x