Answer:
x-y=4
and
x+y=32 is <u>your</u><u> </u><u>equation</u>
<u>d</u><u>i</u><u>f</u><u>f</u><u>e</u><u>r</u><u>e</u><u>n</u><u>c</u><u>e</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>w</u><u>o</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>=</u><u>x-y</u><u> </u><u>is</u><u> </u><u>equal</u><u> </u><u>to</u><u> </u><u>4</u>
<u>s</u><u>u</u><u>m</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>w</u><u>o</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u>=</u><u>x</u><u>+</u><u>y</u><u> </u><u>i</u><u>s</u><u> </u><u>e</u><u>q</u><u>u</u><u>a</u><u>l</u><u> </u><u>t</u><u>o</u><u> </u><u>3</u><u>2</u>
<u>x</u><u>-</u><u>y</u><u>=</u><u>4</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>(</u><u>1</u><u>)</u>
<u>x</u><u>+</u><u>y</u><u>=</u><u>3</u><u>2</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>(</u><u>2</u><u>)</u>
<u>a</u><u>d</u><u>d</u><u>i</u><u>n</u><u>g</u><u> </u><u>equation</u><u> </u><u>1</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>2</u>
<u>x</u><u>-</u><u>y</u><u> </u><u>+</u><u>x</u><u>+</u><u>y</u><u>=</u><u>4</u><u>+</u><u>3</u><u>2</u>
<u>2</u><u>x</u><u>=</u><u>3</u><u>6</u>
<u>x</u><u>=</u><u>3</u><u>6</u><u>/</u><u>2</u><u>=</u><u>1</u><u>6</u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u>
<u>s</u><u>u</u><u>b</u><u>s</u><u>t</u><u>i</u><u>t</u><u>u</u><u>t</u><u>i</u><u>n</u><u>g</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>y</u><u> </u><u>in</u><u> </u><u>equation</u><u> </u><u>1</u>
<u>1</u><u>6</u><u>-</u><u>y</u><u>=</u><u>4</u>
<u>1</u><u>6</u><u>-</u><u>4</u><u>=</u><u>y</u>
<u>y</u><u>=</u><u>1</u><u>2</u><u> </u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u>
Answer: They all = 0 How?
Step-by-step explanation:
Anything in mulitplcation that is times by 0 will always equal to zero.
5^10X0 = 0
10^5X0 = 0
- R3KTFORGOOD ☕
You need to substitute 9 with every x value in the equation.
So, 3(9)^2-7(9)+11
p(x)= 191
Answer:
d
Step-by-step explanation:
There are only three shapes that can form tessellations: the equilateral triangle, square, and regular hexagon. Any one of these three shapes can be duplicated infinitely to fill a plane with no gaps. Many other types of tessellation are possible under different constraints.